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The standard model of particle physics poses certain limitations upon the topology of
spacetime, most notably by imposing the triviality of an important family of character-
istic classes, the Stiefel–Whitney classes. In this, the first of two articles, we present a
physical interpretation of the first three Stiefel–Whitney classes. While the relationship
of the first two to the existence of spinor fields has been known since the sixties, ap-
parently no connection between the third class and microscopical physics seems to be
known. We show that the third class is related to chirality.

1. INTRODUCTION

At first sight, it might be surprising that microscopical physics puts limitations
on the global topological structure of spacetime, yet it is known that the first two so-
called Stiefel–Whitney classes,w1 andw2 (the generators of thěCech cohomology
groupsȞ1(M, Z2) andȞ2(M, Z2) respectively, see appendix), have far-reaching
consequences for physics, but this far the third and fourth remain to be investigated.

We will give a short introduction to this result, and then concentrate on the
next Stiefel–Whitney class. When we wish to construct aphysically reasonable
spacetime to investigate, for example, global causality features, we should con-
struct the spacetime model so that it does not violate any deeply held physical
principles. But we should also investigate if the mathematics we employ may not
give us further information. It is the purpose of this, the first of two articles by
the authors, to prove that the third Stiefel–Whitney class does have a physical
interpretation. In fact, we claim thatw3 is related to chirality. The triviality ofw1

leads to spacetime being orientable, whenw2 is trivial it is possible to erect spinor
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bundles and when both are trivial then obstruction theory from algebraic geometry
tells us thatw3 is trivial, too (Bredon, 1993).

Obviously any physically reasonable spacetime must havew1 = w2 = 1 and
thereforew3 trivial by construction. However, it is our conjecture that all four
Stiefel–Whitney classes of a physically reasonable spacetime must be trivial, and
all have physical significance. It is the purpose of this article to review the first two
in a physical context and show the physical significance of the third.

We will begin by listing some immediate topological restrictions to be im-
posed on any candidate for a physical spacetime manifold. Next, we will outline
the importance of the first two Stiefel–Whitney classes, before we attempt a gene-
ralization tow3. Furthermore, we will suggest a natural chain of groups to be
studied in this respect. All of our results are, unless explicitly stated otherwise,
restricted to four dimensions.

Throughout this paper, we will try to avoid a heavy use of homological algebra
and instead concentrate on simple physical ideas. The paper can thus be seen as a
physicist’s view of the Stiefel–Whitney classes.

The notation is fairly standard: de Rham cohomology is denoted byHr , while
Čech cohomology is denoted by̌Hr , M denotes a four-dimensional spacetime
of Lorentzian signature,Äp(M) the space ofp forms on M , F(M) the space
of real functions f : M → R, while 0 denotes the set of sections in a given
bundle.

2. A PHYSICALLY REASONABLE SPACETIME
IN GENERAL RELATIVITY

General relativity tells us that spacetime,M , is a four-dimensional smooth
manifold. It is equipped with a Lorentz (pseudo-Riemannian of index (1, 3)) metric
that divides the elements of each tangent spaceTmM into three classes, timelike,
null-like, and spacelike. A chart onM is a pair (Ui , ϕi ) of a coordinate neighbor-
hoodUi and a coordinate functionϕi , so that any eventm ∈ M can be expressed
asϕi (m) = {x0(m), x1(m), x2(m), x3(m)}. Without loss of generality we can take
M to be also paracompact, since a manifoldM is known to admit a Lorentzian
metric if and only if it is paracompact (and it admits an everywhere-nonvanishing
continuous direction field) (Visser, 1996).

We shall employ the following groups:

O(1, 3)= {A ∈ GL(4,R) | AηAt = η}, the Lorentz group
SO(1, 3)+={A ∈ O(3, 1) | detA=1, A0

0 > 0}, the proper orthochronous Lorentz
group

SL(2,C) = {A ∈ GL(4,C) | detA = 1}, the special linear group
SU(2)= {A ∈ GL(4,C) | AA† = A†A = 1, detA = 1}, the special unimodular

group
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In other wordsSO(1, 3)+ is the set ofA ∈ SO(1, 3) with A00 positive (i.e. these
{A} do not change the sign of time), and in the literature the notationL↑0 is also
often used. We have chosenSO(1, 3)+ for clarity.

We usually reject spacetimes having closed timelike curves and possibly also
incomplete geodesics, but that is not to say that it has been proven that they do not
exist in a spacetime that as accurately as possible describes the universe we live in.
Therefore we will not make any assumptions that equipM with causality features
we cannot prove. We will, however, reject conditions onM that are known to
guaranteethe existence of closed timelike curves. What we will assume is that as
Hawking and Ellis (1973) write, “in order to be physically significant, a property
of space-time ought to have some form of stability, that is to say, it should also be
a property of ‘nearby’ space-times.”

We can now ask if the mathematical features of our spacetime model violate
any deeply held physical principles.

2.1. Compactness ofM

Paracompact is a rather weak mathematical requirement to impose on a space-
time manifold. Would it be physically reasonable to sharpen it to assumeM to be
compact, or can we only assume thatM is noncompact, although paracompact? It
is known (Hawking and Ellis, 1973) that a compact Lorentzian manifold contains
closed timelike curves and would hence have problems with causality. Thus we
cannot takeM to be compact.

Now, with M noncompact, we have to be careful, as many results in the
mathematical literature only hold for compact manifolds. SinceM carries a metric
it is triangulizable (Nakahara, 1990). We can then define ther th Betti numbers as
the rank of the free Abelian part of ther th homology group

br (M) = dimHr (M ;R)

and the Euler characteristic as

χ (M) = b0− b1+ b2− b3+ b4.

But we do not have Poincar´e duality, sinceM is only assumed to be paracompact,
unless all the (co)homology groups are finite (Goldberg, 1962).

2.2. Connectedness and the de Rham Cohomology

As a topological spaceM is connected if it cannot be written as the disjoint
unionM = M1 ∪ M2 of open setsM1 andM2, M1 ∩ M2 = ∅. If the universe truly
consisted of two disjoint subuniverses that cannot interact, it is reasonable to say
thatouruniverse only consists of the subuniverse that we reside in. We can therefore
claim that a physically reasonable universe is connected, which tells us that the
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zeroth de Rham cohomology group is the set of real numbersH0(M ;R) = R. We
can further assume thatM is also archwise connected, giving us thatH0(M ;R) = Z
andb0 = 1.

Is it reasonable to assume the stronger demand, namely that all loops inM
can be shrunk to a point, or thatM is simply connected? Since we do not want to
exclude the existence of exotic structures such as wormholes, we cannot impose
the vanishing of the fundamental groupπ1(M)—clearly, a closed closed curve
going through a wormhole cannot be shrunk to a point. Thus spacetime may be
taken to be archwise connected but need not be simply connected.

2.3. Orientability of M

To progress further in imposing constraints onM , we have to move beyond
general relativity. Through the Einstein equations, the matter content of the universe
imposes constraints upon its geometry. We will see that the known matter fields
also impose topological conditions. It is known that the experimental evidence
of nonconservation ofC, P, andC P in elementary particle reactions, theCPT
theorem, and the strong principle of equivalence together imply that our universe
must be orientable (Visser, 1996).

Theorem 1. Nonorientable spacetimes are incompatible with the standard model
of particle physics.

2.4. Causality Features ofM

We observe in our local region of spacetime that from any one eventm we
are only able to influence those events that lie in theforward lightconeof m. But
whether or not this is a global property remains to be investigated, and this will be
done in our next article.

Aside from the gravitational fieldg there will be various other fields onM ,
such as the electromagnetic field, the neutrino field, etc. Mathematically, fields
are sections of certain fibre bundles over spacetime. The gauge fields will be
connections on principal bundles. The equations of motion governing the matter
fields must be such that ifU is a convex normal neighborhood andm andm′ are
points inU, then a signal can be sent inU betweenm andm′ if and only if m and
m′ can be joined by aC1 (differentiable) curve lying entirely inU, whose tangent
vector is everywhere nonzero and is either timelike or null; we shall call such
a curvenonspacelike. This is thelocal causality condition(Hawking and Ellis,
1973).

Whether the signal is sent fromm to m′ or from m′ to m will depend on
the direction of time inU. In our neighborhood of spacetime there is a well-
defined arrow of time given by the direction of increase of entropy in quasi-isolated
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thermodynamic systems, making it possible to distinguish past and future at least
locally. But it suffices to observe that the microphysics of the weak interactions
experimentally breaks time-reversal invariance (that is, theT of theCPTtheorem);
furthermore, we cannot even begin to define time reversal in time-nonorientable
manifolds.

Theorem 2. Time-nonorientability spacetimes are incompatible with the stan-
dard model of particle physics.

Physically it would seem reasonable to suppose that there is a local thermo-
dynamic arrow of time defined continuously at every point of spacetime, but we
shall only require that it should be possible to define continuously a division of
nonspacelike vectors into two classes, which we label future- and past-directed.
This means thatM is time-orientable, which is indeed a physically reasonable
requirement sinceM has a Lorentzian metric (Visser, 1996). We can now ask ifM
is alsospace-orientable, that is, if it is possible to divide bases of three spacelike
axes into right-handed and left-handed bases in a continuous manner.

Definition 1. A spacetime is space-orientable if (1) there exists a continuous and
everywhere-nonzero globally defined three-formω = 1

6ωνµλdxν ∧ dxµ ∧ dxλ,
and (2) there exists an everywhere-nonzero timelike vector field that is continuous
up to possible sign reversal, known as the direction fieldd(m), and (3)ω(d) = 0.

We observe, locally, the ability to distinguish left from right, and in micro-
physics we also observe the breakdown of parity invariance (theP of the CPT
theorem). If we believe that the noninvariance of weak interactions under charge
and parity reversals is not merely a local effect but exists at all points of spacetime,
then it follows that going around any closed curve the sign of a charge, the orien-
tation of a basis of spacelike, axes, and the orientation of time must all reverse or
none of them should. So if one assumes that spacetime is time-orientable then it
must also be space-orientable (Visser, 1996).

Theorem 3. Space-nonorientability spacetimes are incompatible with the stan-
dard model of particle physics.

The assumption that our four-dimensional manifoldM carries a (1+ 3) sig-
nature and is noncompact has three immediate consequences.

One is that the Dirac operator is no longer elliptic (Gockler and Schucker,
1987),γ 2

5 = −I andM does not a priori contain closed timelike curves. We want
our model to be in agreement with findings in modern physics, be it the standard
model, general relativity, or cosmology. This already gives us thatw1 = w2 = 1
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and we will begin with reviewing in details the first and second Stiefel–Whitney
classes, and collect the consequences of the triviality of both.

3. SPACETIME ORIENTABILITY AND THE FIRST
STIEFEL–WHITNEY CLASS

An orientation onM can be defined using homology, forms, or the transition
functions for the tangent bundleT M. For sake of completeness, we will list all
these definitions here.

In (Milnor and Stasheff, xxxx) we find that alocal orientationµm for M
(dimM = n) atm is a choice of one of the two possible generators forHn(M, M −
m;Z)4 . Such a local orientationµm has the physical property that it determines
local orientationsµm′ for all pointsm′ in a small neighborhood ofm. To see this
defineρK : Hi (M, M − L)→ Hi (M, M − K ), whereK ⊂ L are both compact
and contained inM . The image ofρK is thus a restriction toK . Let O be a ball
aroundm, then for eachm′ ∈ O the isomorphisms (Husemoller, 1994)

H∗(M, M −m;Z)
ρm← H∗(M, M − O;Z)

ρm′→ H∗(M, M −m′, Z)

determine a local orientationµm′ .

Definition 2. An orientation for M is a function that assigns to eachm ∈ M
a local orientationµm that varies continuously withm in the following way:
For eachm there should exist a compact neighborhoodN and a homology class
µN ∈ Hn(M, M − N) so thatρm′ (µN) = µN for eachm′ ∈ N.

So in our case an orientation is a homology-valued function onM, f : M →
H4(M, M −m;Z).5 An alternative definition of orientability is the following

Definition 3. If the tangent bundleπ : T M→ M is n-dimensional thenÄn(M)
is one-dimensional. This means thatÄn(M)− {0} has two components. Anorien-
tationon T M (and onM) is a choice of one of the components ofÄn(V)− {0}.

4 For the reader unfamiliar with homology theory it may help to think of a sphere around the removed
point m. We can then define two inequivalent ways of going around the missing point, one for each
generator.

5 It is worth noting that if the subsetK containingm is compact, then there is one and only one homology
classµK ∈ Hn(M, M − K ;Z) which satisfiesρm(µK ) = µm for eachm ∈ K (Milnor and Stasheff,
1974). IfM itself is compact then there is one and only oneµM with this property. This homology class
µ = µM = [M ] is called thefundamental homology classof M . This does not mean thatM compact
possess only one generator ofHn(M, M −m;Z). The two generators of this homology group can be
thought of as the two inequivalent ways of going round a closed loop with the centre point removed.
But in caseM is compact only one of the generators satisfy the property mentioned above.
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Any orientable manifold then admits two inequivalent orientations, often
called right-handed and left-handed, respectively. The chosenn-form (orientation)
vanishes nowhere and is called thevolume element. It plays the role of a measure
when we integrate functionsf ∈ F(M), and integrations of differential forms over
M is defined only whenM is orientable.

For the reader unfamiliar with this use of forms, it can help to think of it in the
following way: At a pointm ∈ M the tangent spaceTmM is spanned by the basis
{eµ} = ∂

∂xµ , wherexµ is the local coordinate on the chartUi to whichm belongs.
If we let U j be another chart such thatUi ∩U j 6= ∅ with local coordinatesyµ and
let m ∈ Ui ∩U j 6= ∅, thenTmM is spanned either by{eµ} or by {ẽµ} = { ∂∂yµ }.

The basis changes as

ẽν = ∂xµ

∂yν
eµ,

where (∂xµ/∂yν) are known as the transitions functionsti j in the theory of fibre
bundles. If the JacobianJ = det(∂xµ/∂yν) = det(ti j ) > 0 on Ui ∩U j then the
two bases{eµ} and{eν} are said to define the same orientation andM is said to be
orientable.

Definition 4. Theorientation bundleof M is the line bundleL M on M given by
the transition functionsτi j = sign det(ti j ).

Clearly, if M is orientable the orientation bundle is trivial, since the transi-
tions functions all become identically one. Moreover, the transition functions have
to satisfy the cocycle condition and hence form elements of the firstČech coho-
mology group,Ȟ1(M, Z2). The generator of this group,ω1, is known as thefirst
Stiefel–Whitney class. Thus [τi j ] = w1, and this gives the relationship between
orientability and triviality of the first Stiefel–Whitney class. For the particular case
of a (3+ 1)-dimensional manifold, we can summarize all of this in a theorem.

Theorem 4. For our four-dimensional spacetime manifold M the following state-
ments are equivalent:

1. M is orientable (that is, spacetime-orientable, time-orientable, and space-
orientable).

2. There is a collection8 = {(U, ϕ)} of coordinate systems on M such that

M = ∪(U,ϕ)∈8U and det

(
∂xµ
∂yν

)
> 0 on Ui ∩U j

whenever(Ui ; x0, . . . , x3) and (U j ; y0, . . . , y3) belongs to8.

In other words the Jacobian determinant for coordinate transformations
on Ui ∩U j must be positive definite.
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3. The structure group of the tangent bundle reduces from O(1, 3) to
SO(1, 3)+.

4. There is a nowhere-zero four-form on M

ω4 = ω0123(m) dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∈ Ä4(M).

5. The first Stiefel–Whitney class w1(M) is trivial.
6. T M is orientable.
7. M’s orientation bundle is trivial, that is it possesses a global section.

For proof, see Geroch (1967, 1968, 1970) and Visser (1996). So as we in-
corporate the standard model of physics into our spacetime, we find that space-
time orientability is connected to the existence of a nowhere-vanishing section in
Ä4(M), the vanishing of the first Stiefel–Whitney class and the positive definite-
ness of the Jacobian matrix. In fact the Stiefel–Whitney classes that are elements
of Ȟ r (M, Z2) are obstructions to global sections in certain bundles, as will become
clear as we proceed. We refer the reader unfamiliar withČech-cohomology and
characteristic classes to Bott and Tu (1982) or the appendixes.

It is worth mentioning that it is becauseM is time-orientable (in addition to
being spacetime-orientable) that the structure group reduces to the proper Lorentz
group and not only toSO(1, 3). This reduction of the structure group will be
important for the existence of spinor structures in the next section and the triviality
of the second Stiefel–Whitney class. Also note that sinceM is endowed with
a metric we can define theinvariant volume element, which is invariant under
coordinate transformations, by

Ä4 =
√
|g| dx0 ∧ dx1 ∧ dx2 ∧ dx3,

whereg = detgµν , andxµ the coordinates of the chart (U, ϕ).

4. SPINOR STRUCTURE AND THE SECOND
STIEFEL–WHITNEY CLASS

The next important ingredient in the standard model is the existence of fami-
lies of fermions (leptons and quarks); thus our spacetime manifold must accommo-
date spinor fields. This turns out to impose yet another condition upon its topology.
First, however, we need to quickly summarize what we mean by defining spinors
on a general manifold.

Recall that for anyn-dimensional vector space, such asTmM equipped with
a metricg of signaturer + s= n we can define theClifford algebra C(r, s) as the
real associative algebra generated by the elements of the vector space that satisfy

V W+W V = 2g(V, W)I .
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In n = 4 dimensions our 16-dimensional Clifford algebra has the following direct
sum compositions:

C(1, 3)= ⊕4
i=0Ci = R⊕ TmM ⊕ C2⊕ C3⊕ C4. (1)

We can then define the even subalgebraCe ≡ ⊕i evenCi and the odd subspace
Co ≡ ⊕i oddCi . The elements of the vector space out of which we construct the
Clifford algebra that are of unit length

g(V, V) = ±1

are made into the Clifford group Pin(r, s) generated by Clifford multiplication.
Pin(r, s) is a submanifold ofC(r, s) and is therefore a Lie group with Lie algebra
spin(r, s) = C2, again contained in the Clifford algebra itself. The Special Clifford
group, Spin(r, s), is the subgroup of Pin(r, s) consisting of even elements:

Spin(r, s) = Pin(r, s) ∩ Ce.

For n ≥ 3, Spin(r, s)+ is simply connected, and sinceSO(r, s)+ and Spin(r, s)+

share the same Lie algebra, Spin(r, s)+ is the universal covering group of the proper
Lorentz group. Any representation ofSO(1, 3)+ then also yields a representation of
its universal covering group, just by composition with the covering mapϕ. A spinor
or double-valued representation ofSO(1, 3)+is defined by a linear representation of
Spin(1, 3)+∼=SL(2,C) that cannot be obtained from a representation ofSO(3, 1)+.

Since the Clifford group Pin(1, 3) is a subset of the Clifford algebraC(1, 3)
with the same product, the Dirac representationρ of the algebra carried byC4 is at
the same time a group representation. It is a spinor representation and the vectors
of C4 are called Dirac spinors. But while the Dirac representation is irreducible as
a representation of the Clifford algebra, it isreducibleas a group representation.

M is said to admit a spin structure (which is not necessarily unique) if it
is possible to define aspin bundle S(M) over M . To define this bundle we first
of all need to check if the frames used are globally defined. That is, we need a
global section in the frame bundleFM associated with the tangent bundleTM. If
xµ are the coordinates onUi andyµ the coordinates onU j , with Ui ∩U j 6= ∅, the
coordinate change when going fromUi toU j can be written by means of elements
from SO(1, 3)+, the transition functions forT M (and by association, also for the
frame bundleF M).

These transition functions satisfy

ti j t jk tki = 1, ti i = 1, ti j ∈ SO(3, 1)+.

To define the spin-bundle we must check ifSO(1, 3)+ lifts to its universal covering
group Spin(1, 3)+, the Special Clifford Group using the double-cover homomor-
phismϕ−1, which takes its values inZ2.

For this “lifting” of SO(1, 3)+ to exist, and thus define a spin bundle, the signs
of kerϕ = ±I must be patched together in a consistent manner. The obstruction
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to this is the second Stiefel–Whitney classw2. Physically speaking, then, this
characteristic class must be trivial, otherwise fermions would not be elementary
particles.

A spin structure onM is then defined by the transition functionst̃i j ∈
Spin(3, 1)+ = SL(2,C) such that

ϕ(t̃i j ) = ti j , t̃i j t̃ jk t̃ki = 1, t̃i i = 1.

A Dirac spinor is then a section of the the Dirac spin fibre bundle

(D(M), π, M, C4, SL(2,C)⊗ SL(2,C)),

that is, a (12, 0)⊗ (0, 1
2) representation of the Lorentz groupSO(3, 1)+.6 Since

spinors are of such fundamental importance to physics it will be interesting to
see what other properties are required of a manifold to allow a spinor structure.
The existence of a spinor structure is first and foremost related to the topological
properties of the underlying spacetime manifoldM—not the choice of metric. But
Geroch (1967) shows that the degree of curvature also must be investigated when
one looks to see if spinor fields can be admitted. Since theČech cohomology only
deals with topology this is somewhat surprising. But for there to be even the
possibility of a spacetime manifold not allowing spinor structure there must be a
minimum amount of curvature. This curvature is expressed in the form of a surface
integral and we have included a discussion of this in the appendixes.

Theorem 5. For our paracompact four-dimensional manifold M the following
holds(Geroch, 1970):

1. If the Weyl (or conformal) tensor in the Petrov classification (see ap-
pendixes) is everywhere,[1, 1, 1, 1], [2, 1, 1], [3, 1]or [4], or

2. if the Riemann tensor vanishes, or
3. if M arises from some initial-value data, that is if M has a Cauchy surface,

then M possesses spinor structure.

6 Since we already saw in the previous section that we have time orientability, we can assume that the
properness of the spin structures we will discuss below is implicit. For Lorentz signature manifolds
we must usually distinguish between proper spin structure and spin structure. The former comes from
the reduction of the Lorentz groupSO(1, 3) to the proper Lorentz groupSO(1, 3)+. A proper spin
structure requires not only orientability but also time orientability for the Lorentz group to reduce to
the proper. It is possible to define spinor structure without orientability, yet these alternative spinors
all seem to be unphysical. If one wishes to define spinor fields with respect to the full Lorentz group
the usual definition must be generalized. There are eight different simply connected covering groups
of SO(1, 3) that correspond to the various combinations of signs forP2, T2, and (PT)2, where
P (respectivelyT) is one of the two spin transformations corresponding to spatial reflections (time
reflections). Hence one can consider eight types of spin structures. Spin(4), the full spine group is
such thatP = ±ε0 andT = ±ε1ε2ε3, such thatP2 = T2 = 1 andPTPT= −1 (whereεi are the
Clifford generators.). Each situation would be handled differently, depending on the topology of the
base spaceM and the structure desired for the vector bundle of spinors (DeWittet al., 1979).
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For proof we refer the reader to Geroch (1967, 1968, 1970). If it is known
that M possesses spinor structure we will however not generally know about the
features of the Weyl or Riemann tensor. We can certainly not assume the Riemann
curvature tensor to vanish, as this would imply a completely flat spacetime. But
there are other ways of checking for the existence of a spinor structure.

Theorem 6. For our paracompact four-dimensional oriented spacetime M the
following statements are equal:

1. M possesses spinor structure.
2. M is parallelizable.
3. The second Stiefel–Whitney class w2 is trivial.
4. M possesses a global section in the frame bundle FM.
5. The fundamental groups of the frame bundle FM and M are related as

follows:

π1(F M) ≈ π1(M)⊗ π1(FmM) = π1(M)⊗ Z2.

6. The index I(S) is an even integer for every two-surface S that is topologi-
cally a two-sphere, in M.

For proof see, for example, Geroch (1967, 1968); for a definition of the index
I(M) see the Appendixes.

Most common solutions of Einstein’s equations satisfy one or another of these
conditions forM to have spinor structure (Geroch, 1970), but while certain of the
above criteria can be easily checked, others cannot be. The Schwarzschild solution
to the Einstein equations, for instance, does allow for a spinor structure, but it is
not immediately clear that this spacetime has a nowhere-zero continuous section
in its frame bundleFM, that is, a system of tetrads or vierbeins.

Note also, that statement 4 cannot in general by assumed to hold for other met-
ric signatures and dimensions, while statement 2 only holds for a four-dimensional
paracompact spacetime. Hence, as spacetime orientation was related to the van-
ishing of the first Stiefel–Whitney class and a nowhere-zero continuous section
in Ä4(M), so the existence of spinors is related to the vanishing of the second
Stiefel–Whitney class, an element ofȞ2(M, Z2) and a continuous global section
in the frame bundleFM.

How do we determine if the spin-structure ofM is unique? Each choice of
spin structure determines an element of the first cohomology groupȞ1(M, Z2)
and, conversely, each element ofȞ1(M, Z2) determines a spin structure onM ,
so that the set of spin structures is parametrized byȞ1(M, Z2). If Ȟ1(M, Z2)
vanishes then the spinor structure ofM is unique, which happens, for example,
whenM is simply connected (Geroch, 1968).



P1: GCR

International Journal of Theoretical Physics [ijtp] pp345-ijtp-364903 January 22, 2002 16:17 Style file version Nov. 19th, 1999

182 Antonsen and Flagga

The triviality of the first two Stiefel–Whitney classes have, as we have seen,
far-reaching consequences for physics. That abstract algebraic topology enters on
such a fundamental level was what led us to start our research concerning the two
remaining Stiefel–Whitney classes.w1 = 1 leads to the reduction of the structure
group fromO(1, 3) toSO(1, 3) and then toSO(1, 3)+, while the triviality of the
second Stiefel–Whitney class makes it possible to lift theSO(1, 3)+ bundle to
the universal coveringSL(2,C) bundle overM . Both haveZ2 as their kernels. We
therefore propose the following chain of groups to be linked to the four Stiefel–
Whitney classes:

O(1, 3)→ SO(1, 3)→ SO(1, 3)+ → SL(2,C)→ SL(2,C)⊕ SL(2,C)

→ SU(2)→ SO(3).

SO(3) andSO(1, 3)+ are simple Lie groups;SL(2,C) andSU(2) are not. All but
the last element in this chain of groups will be dealt with in this paper.

5. CHIRAL (WEYL) SPINORS AND THE THIRD
STIEFEL–WHITNEY CLASS

Cohomology can be equipped with a special operation, theSteenrod square,
Sqk : Ȟ r (M, Z2)→ Ȟ r+k(M, Z2). Sincew1 andw2 are both trivial we can utilize
the following theorem (Milnor and Stasheff, 1974):

Theorem 7. The cohomology class Sqk(wr ) can be expressed as the polynomium

Sqkwr =
k∑

i=0

(
r − k+ i − 1

i

)
wk−i ^ wt+i

= wkwr +
(

r − k

1

)
wk−1wr+1+

(
r − k+ 1

2

)
wk−2wr+2 · · ·

+
(

r − 1

r

)
w0wr+k,

where Sqk : Ȟ r (M, Z2)→ Ȟ r+k(M, Z2).

This gives us

Sq1w2 = w1w2+ w0w3, (2)

and sincew0, w1, andw2 are all trivial we get thatw3, too, is a trivial cohomology
class.7 This, however, does not mean thatw3 in itself does not contain any inte-
resting physical information. We will argue thatw3 is related to chirality. This is

7 For more on Steenrod squares see Bredon (1993). It is an odd coincidence that this square can be
used to calculatew3, but not, e.g.,w4.
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actually a rather natural question to study. We have seen that the first two Stiefel–
Whitney classes are obstructions to the existence and uniqueness of a (proper) spin
structure. Once spinors have been defined, it is natural to ask whatkindsof spinors
can be defined? Imposing no conditions, we of course get Dirac spinors, but we
can try to impose extra conditions to see when Weyl or Majorana spinors can be
defined. Majorana spinors are eigenstates of the charge conjugation operator, and
they do not seem to exist in nature (Ramond, 1989). The neutral fermions, the
neutrinos, that do exist are chiral, that is, have a definite handedness. A priori, the
existence of chiral spinors poses further restrictions upon the spacetime manifold.
Hence, that is what we are going to consider now.

Consider thus the Clifford algebraC(3, 1) defined in the previous section.
Since the elementε5 ≡ ε0ε1ε2ε3 ∈ C4 anticommutes with all elements ofC1 =
TmM it commutes with all elements ofC2, since

[ε5, εaεb] = {ε5, εa}εb − εa{ε5, εb} = 0, (3)

whereεaεb are the six generators ofC2. By extensionε5 then commutes with
all of Ce so it belongs to the centreZ(Ce) of this subalgebra, and can thus be
diagonalized. Its action is then reduced to multiplication by a scalar (eigenvalue)
and to each eigenvalue there corresponds an eigenspace. In other words we can
useε5 to reduce the Dirac spinors.

For n even we defineγ5 as the Dirac representation of the generator ofCn:

γ5 ≡ ρ(ε0ε1 · · · εn). (4)

With

γ 2
5 = (−1)

n(n−1)
2 +sI ,

wherer + s= n is the dimension andI is then× n unit matrix; the following
operators are projectors:

L ≡ 1

2

(
I −

√
(−1)

n(n−1)
2 +sγ5

)
(5)

R ≡ 1

2

(
I +

√
(−1)

n(n−1)
2 +sγ5

)
(6)

In our four-dimensional case with a (1, 3) signature we have

γ 2
5 = −I ,

giving the projection operators the following form

L = 1

2
(I − i γ5) R= 1

2
(I + i γ5)

and a Dirac spinorψ ∈ 0(M, (D, πD, M, C4, SL(2,C)⊕ SL(2,C))) splits into
two SL(2,C)-invariant components (in other words in addition to irreducible
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representations of the Clifford algebraC(1, 3) we now also get irreducible repre-
sentations of Spin(1, 3)+)

ψL ≡ Lψ ψR ≡ Rψ

called left- and right-handed Weyl (or chiral) spinors.
The key factor to note about the standard model of particle physics is that the

weak interactions are chiral, that is they exist in a definite eigenstate of the chiral
operatorγ5:

γ5ψL = −iψL , and γ5ψR = +iψR

Particle physicists are used to seeing Eq. (4) in flat space defined as

γ5 ≡ γ 0γ 1γ 2γ 3 = sign[abcd]

4!
γ aγ bγ cγ d,

where as usual, theγ matrices are Dirac representations of the generators of
C1, γ a = ρ(εa), and they generate Spin(1, 3)+ = SL(2,C). Not allγ matrices are
unitary and they are said to carry a nonunitary representation of the Lorentz group
SO(1, 3)+.

When using the standard model of particle physics in a curved spacetime
manifold,8 the definition ofγ5 has to be generalized to

γ5 ≡ ω[µνλκ]

4!
eµa eνb eλc eκd γ

aγ bγ cγ d,

whereeµa ∈ SO(1, 3)+ are the vierbeins,ω[µνλρ] is a four-form, and theγ matrices
satisfy

{γµ, γν} = 2gµν I , (7)

{γ5, γ µ} = 0. (8)

Let m ∈ Ui , whereUi is a chart, whose coordinate isxµ(m). The four-form can
be expanded as

ω[µνλκ] = ω4 = ω0123(m) dx0 ∧ dx1 ∧ dx2 ∧ dx3, (9)

with a positive definiteω0123∈ F(Ui ). So onUi the four-form is defined and
belongs toÄ4(Ui ). At m, TmUi has natural basis{ ∂

∂xµ } on Ui and a framêe=
{e0, e1, e2, e3} atm is expressed as

ea = eµa
∂

∂xµ

∣∣∣∣
m

, 0≤ a ≤ 3. (10)

8 Really,ψ is a section of the product bundle0(M, (D, M, π, C4, SL(2,C)⊕ SL(2,C)))⊗ E, where
E is an associated vector bundle ofP(M, G) in an appropriate representation, describing the “inner”
degrees of freedom (color etc.). But we can ignore these “inner,” gauge, degrees of freedom for now
and concentrate on the spacetime transformation properties of the fermionic fields.
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In curved space we can therefore locally define the chirality operatorγ5,i and
the projection operatorsRi andLi , whose actions on a sectionψi of the local Dirac
bundle (D, πD, Ui , C4, SL(2,C)⊕ SL(2,C)) are

Liψi = 1

2
(I − i γ5,i )ψi = ψL ,i ,

(11)

Riψi = 1

2
(I + i γ5,i )ψi = ψR,i ,

whereψL ,i becomes a section of the left-handedWeyl bundle(W, πW, Ui , C2,
SL(2,C)) andψi ,R becomes a section of the right-handed Weyl bundle (W̄, πW̄, Ui ,
C2, SL(2,C)). These spinor bundles can always be defined locally and are glob-
ally defined whenw2 is trivial. We will return to this below, and for now sim-
ply note that we can locally write the Dirac bundle as theWhitney-sum bundle
D = W⊕ W̄. That is,D = W⊕ W̄ is the pullback bundle ofW × W̄ by the map
fi : Ui → Ui ×Ui , defined byfi (m) = (m, m) (embedding in the diagonal).

D = W⊕ W̄
π2→ W × W̄

π1 ↓ ↓ πw × πw̄

M
f→ M × M

OnUi the fibre of the local Dirac bundle isC2⊕ C2. If we let {tw
i j } and{t w̄

i j } be the
transition functions ofW andW̄ respectively, then the transition functionTi j of
W⊕ W̄ is the 4× 4 matrix

Ti j (m) =
(

tw
i j (m) 0

0 t w̄
i j (m)

)
. (12)

Note that we now employ the notationt̃i j = tW
i j for clarity.

If we try to extend this reduction of the Dirac bundle to all ofM we see that
we must extendω4 throughout all ofM . This amounts to the componentω0123

remaining positive definite on any chartUi , and the positive definiteness must be
independent of the choice of coordinates. If this can be done thenM is orientable
andω4 is the volume element defined in Section 3.

Letm ∈ Ui ∩U j ∩Uk ∩Ul 6= ∅, and letxµ, yµ, zµ, anduµ be the coordinates
of Ui , U j , Uk, andUl respectively.
Then the framêe= {e0, e1, e2, e3} atm can now be expressed as

ea = eµa
∂

∂xµ

∣∣∣∣
m

= ẽµa
∂

∂yµ

∣∣∣∣
m

= ēµa
∂

∂zµ

∣∣∣∣
m

= ĕµa
∂

∂uµ

∣∣∣∣
m

,

where (eµa ), (ẽµa ), (ēµa ), and (̆eµa ) ∈ SO(1, 3)+. Sinceeµa = ∂xµ

∂yν ẽνa we get

ti j (m) =
((

∂xµ

∂yν

)
m

)
∈ SO(1, 3)+,
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and in a similar manner, for example,

t jk =
((

∂yµ

∂zν

)
m

)
, tkl =

((
∂zµ

∂uν

)
m

)
, and tli =

((
∂uµ

∂xν

)
m

)
. (13)

So, using thex coordinate we can writeγ µ = eµa γ a. On the intersectionUi ∩
U j ∩Uk ∩Ul we therefore have

γ µ = eµa γ
a

⇔ γ̃ ν = ti j γ
µ = ẽνaγ

a = ti j eµa γ
a. (14)

With this notation, Eq. (9) form ∈ Ui ∩U j ∩Uk ∩Ul becomes

ω4 = ω0123(m)
∂x0

∂yµ
dyµ ∧ ∂x1

∂yν
dyν ∧ ∂x2

∂yλ
dyλ ∧ ∂x3

∂yκ
dyκ

= ω0123(m) det

(
∂xµ

∂yν

)
dy0 ∧ · · · ∧ dy3

= ω0123(m) det(ti j ) dy0 ∧ · · · ∧ dy3

= ω0123(m) det(ti j ) det(t jk)dz0 ∧ · · · ∧ dz3

= ω0123(m) det(ti j ) det(t jk) det(tkl) du0 ∧ · · · ∧ du3

= ω0123(m) det(ti j ) det(t jk) det(tkl) det(tli ) dx0 ∧ · · · ∧ dx3 (15)

The determinants in Eq. (15) are clearly the Jacobians of the coordinate transforma-
tions and must not only be positive, they must be 1. This is satisfied if the structure
group isSO(1, 3)+ (and in the generaln-dimensional case if the structure group
for T M is SO(r, s)) so thatω0123 is independent of the choice of coordinates).

So we see that to define chirality globally we must have a globally defined
four-form, which is equivalent to requiring thatw1 is trivial and M orientable.
In higher even dimensions,n, a generalization to a globally definedn-form is
straightforward (Visser, 1996).

We have thus recovered the known theorem stated below.

Theorem 8. Chiral fermions exist if and only if spacetime is orientable (and the
second Stiefel–Whitney class vanishes).

So from our discussions in the previous sections, we propose the following
theorem.

Theorem 9. Chiral (or Weyl) fermions exist if and only if the first and second
Stiefel–Whitney classes both vanish.

The remainder of this section will be devoted to proving the following.
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Theorem 10. In an n-dimensional spacetime (n even) chirality is globally defined
if and only if w3 ∈ Ȟ3(M ;Z2) is trivial.

In the course of doing so we also prove the following.

Corollary 1. w3 is trivial if and only if w1 = w2 = 1.

This, as mentioned earlier, could already be found using Steenrod squares,
but can also be done in a “physicist’s way” as outlined here.

We can now see what is required for the chirality operators, projection op-
erators, and the Whitney-sum bundle to be defined globally. If we takeRi =
1
2(I + i γ5,i ) (the calculations forLi are similar) we find that we must have

Ri = 1

2
(I + i γ5,i ) (16)

or

Ri = 1

2

(
I + i

(ω[µνλκ], i

4!
eµa eνb eλc eκd γ

aγ bγ cγ d
))

= 1

2

(
I + i

(
det(ti j )

ω[νλκµ], j

4!
ti j ẽνa ti j ẽλb ti j ẽκc ti j ẽµd γ

aγ bγ cγ d
))

= 1

2

(
I + i

(
det(ti j )

ω[νλκµ], j

4!
(ti j )

4 ẽνa ẽλb ẽκc ẽµd γ
aγ bγ cγ d

))
= 1

2

(
I + i

(
det(ti j ) det(t jk)

ω[λκµν],k

4!
(ti j )

4(t jk)4

× ēλa ēκb ēµc ēνd γ
aγ bγ cγ d

))
= 1

2

(
I + i

(
det(ti j ) det(t jk) det(tkl)

ω[κµνλ], l

4!
(ti j )

4(t jk)4(tkl)
4

× ĕκa ĕµb ĕνc ĕλd γ
aγ bγ cγ d

))
= 1

2

(
I + i

(
det(ti j t jk tkl tli )

ω[µνλκ], i

4!
(ti j t jk tkl tli )

4 eµa eνb eλc eκd γ
aγ bγ cγ d

))
.

(17)

(Note the slight abuse of notation.) Since theti j s obey the cocycle condition
(ti j t jk tkl tli )4 = I , and as we discussed above, the determinant is also trivial since
the transition functions belong to a Special Orthogonal group, we can extend the
projection operators to all ofM . If the Dirac spin bundle is globally defined it
should be possible to write it as the Whitney sumD = W⊕ W̄.
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The chiral projection operators should act on a sectionψ = ψi of the Dirac
bundle so that

Rψi = 1

2
(I + i γ5,i )ψi

= 1

2
(I + i γ5, j )ψ j = 1

2
(I + i γ5, j )Ti jψi

...

= 1

2
(I + i γ5,i )Ti j TjkTkl Tliψi

= ψR,i (18)

is well defined. This is the case if theTi j s define the Dirac spin bundle over
M , where, as before the transition functionTi j of D = W⊕ W̄ is a (dimF +
dimF ′)× (dimF + dimF ′) matrix, F being the fibre ofW andF ′ the fibre ofW̄:

Ti j (m) =
(

tw
i j (m) 0

0 t w̄
i j (m)

)
. (19)

In the (1+3)-dimensional case, withF = F ′ = C2, Ti j becomes a 4× 4 matrix
belonging toSL(2,C)⊕ SL(2,C), in the generalr + s= n-dimensional case,
Ti j ∈ Spin(r, s)⊕ Spin(r, s). For theTi j s to define the Dirac spin bundle overM
we see from Eq. (18) that they must satisfy

Ti j TjkTkl Tli = In×n

⇒
(

tw
i j t

w
jk tw

kl t
w
li 0

0 t w̄
i j t

w̄
jk t w̄

kl t
w̄
li

)
=
(

I n
2×n

2
0

0 I n
2×n

2

)
(20)

SoTi j defines a Dirac spinor bundle overM if tW
i j andt w̄

i j define theW bundle and
W̄ bundle overM respectively. But we already know that this is the case if the
SO(r, s)+ bundle lifts to the Spin(r, s)+ bundle overM , and the obstruction to this
is the second Stiefel–Whitney class.

The universal covering mapϕ sends both Spin(r, s) and Spin(r, s) to
SO(1, 3)+ so thatϕ(tw

i j ) = ϕ(t w̄
i j ) = ti j and theČech 2-cochain is defined as

ϕ−1(ti j t jk tki ) = f2(i , j , k)I .

Whenw2 is trivial we know that

tw
i j t

w
jk tw

ki = I = t w̄
i j t

w̄
jk t w̄

ki , (21)

giving us

I = tw
i j t

w
jk tw

ki I = tw
i j t

w
jk tw

ki t
w
i l tw

li = tw
i j t

w
jk tw

kl t
w
li (22)
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as well as

I = t w̄
i j t

w̄
jk t w̄

ki I = t w̄
i j t

w̄
jk t w̄

ki t
w̄
i l t w̄

li = t w̄
i j t

w̄
jk t w̄

kl t
w̄
li . (23)

We can therefore define thěCech 3-cochainf3 as

f3(i , j , k, l )I = Ti j TjkTkl Tli =
(

f2(i , j , k) tw
i l tw

li 0

0 f2(i , j , k)t w̄
i l t w̄

li

)
(24)

only whenw2 is trivial. If Ȟ2(M ;Z2) itself is trivial, then the Dirac spinor structure
is unique, and here we can see why. IfȞ2(M ;Z2) only contains one element, there
is only one Weyl spinor structure from which to build to the Dirac spinor structure.

f3 is obviously symmetric and it is trivially closed,f3 = I if it can be de-
fined, and thus it determines an element [f3] = w3 ∈ Ȟ3(M ;Z2). So, asw1 is an
obstruction to orientability andw2 an obstruction to a Weyl spinor structure, so
w3 is an obstruction to Dirac spinor structure and global chirality.

6. THE REDUCTION OF THE STRUCTURE GROUP

The first two Stiefel–Whitney classes could be expressed as obstructions to
changing the structure group. Forw1 it was to the reductionO(3, 1)→ SO(3, 1),
which we can further reduce to its connected partSO(3, 1)+, whereasw2 was the
obstruction to the lifting to universal covering group,SO(3, 1)+ → Spin(3, 1)'
SL(2,C), which again was extended toSL(2,C)⊕ SL(2,C), resulting in the Dirac
bundle. Now, the Lie algebrasl2(C), of SL(2,C) can be written as the complexi-
fication of su(2), sl2(C) ' su(2)⊗ C. It is therefore natural to assume that we
can reduce the structure groups fromSL(2,C) to SU(2) and that this reduction
has something to do with the third Stiefel–Whitney class.

A famous solution to Eq. (7) in four dimensions is the so-called Pauli–Dirac
form, utilizing the four 2× 2 matrices:

I =
(

1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
,

where (σ1, σ2, σ3) are the Pauli matrices, a representation of theSU(2) algebra
generators. Withγ µ = gµνγν we can now write the solution to Eq. (7) as

γ 0 =
(

I 0

0 I

)
, γ i =

(
0 σi

−σi 0

)
(25)

Chirality splits the set of sections in the Dirac bundle (D, π, M, C4, SL(2,C)⊕
SL(2,C)) into SL(2,C)-invariant components according to the eigenvalues ofγ5.

SL(2,C) is the complexification ofSU(2), that issl(2,C) = su(2)⊗ C.
When we now look at Eq. (25) we see that when chirality splits the sections of the
Dirac-bundle, not only does the structure groupSL(2,C)⊕ SL(2,C) split into
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SL(2,C) and SL(2,C), but it reduces even further to two copies of the unitary
groupSU(2), giving us the Weyl bundle (W, π, M, C2, SU(2)).

This happens by simply considering Chiral (Weyl) spinors. But we can now
conclude that when a chiral structure exists (i.e., ifγ5 is defined globally), then the
structure group reduces fromSL(2,C) to SU(2), and the Dirac equation reduces
to the Weyl equation.

7. CONCLUSION AND OUTLOOK

We gave a “physicist’s view” of the first three Stiefel–Whitney classes in
terms of restrictions imposed by the standard model of particle physics upon the
topology of spacetime. Each of the three classes were related to the definition of
a certain bundle, to the change of structure group, and to a physical requirement.
Our findings are summarized in the table below.

It becomes natural to look for a similar interpretation of the final Stiefel–
Whitney class,w4.

Class Bundle Group Meaning

w1 Orientation O(3, 1)→ SO(3, 1) Orientation
w2 Dirac SO(3, 1)+ → SL(2,C) Spin structure
w3 Weyl SL(2,C)→ SU(2) Chirality

The problem is where to start. If we consider the changes in structure group, it is
natural to consider one more reduction (in fact, the last nontrivial one possible),
namelySU(2)→ SO(3). This would be a kind of “mirror image” of the second
Stiefel–Whitney class construction, sinceSU(2) is the double covering ofSO(3),
and this is isomorphic to Spin(3). We therefore suggest to study the chain of groups
already mentioned earlier:

O(3, 1)→ SO(3, 1)→ SO(3, 1)+ → SL(2,C)→ SL(2,C)⊕ SL(2,C)

→ SU(2)→ SO(3).

On the other hand, the only ingredient we have not really used so far is
causality. We therefore conjecture the fourth class to be related to causality and to
the groupSO(3) in the above chain; this is the topic of a sequel paper, which is in
progress.

APPENDIX A: THE ČECH COHOMOLOGY

If a function onM isZ2-valued, totally symmetric, and defined onUi0 ∩Ui1 ∩
· · · ∩Uir , then f is aČech r-cochain. If we byCr (M ;Z2) denote the multiplicative
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group ofČechr -cochains we can define the coboundary operatorδ, Cr (M ;Z2)→
Cr+1(M ;Z2), by

(δ f )(i0, i1, . . . , i r , rr+1) =
r+1∏
j=0

f (i0, . . . , î j , . . . , i r+1),

where the variables with the circumflex (̂ ) is omitted. The coboundary operator is
nil-potent so thatδ2 f = 1, where 1 is the trivial element, as we employ multiplica-
tive notation. The cocycle groupZr (M ;Z2) and the coboundary groupBr (M ;Z2)
are then defined as

Zr (M ;Z2) = { f ∈ Cr (M, Z2) | δ f = 1},
Br (M ;Z2) = { f ∈ Cr (M ;Z2) | ∃ f ′ ∈ Cr−1(M ;Z2) : f = δ f ′}.

Now we can define ther th Čech cohomology groupby

Ȟ (M ;Z2) = kerδr
imδr−1

= Zr (M ;Z2)

Br (M ;Z2)
.

APPENDIX B: THE WEYL TENSOR AND THE
PETROV CLASSIFICATION

When the Riemann curvature tensor is defined, we can construct new tensors
by index contraction such as the Ricci tensor

Ricµν = Rλµλν ,

the scalar curvature

R = gµν Ricµν ,

and forn ≥ 4 theWeyl tensor

Cµνλκ = Rµνλκ + 1

n− 2
(Ricµλgνκ − Ricνλgµκ + Ricνκgµλ − Ricµκgνλ)

+ R
(n− 2)(n− 1)

(gµλgνκ − gµκgνλ). (A1)

For dimM ≥ 4 a necessary and sufficient condition for conformal flatness is that
C = 0, that is, ifC = 0 then everym ∈ M has a chart (U, ϕ) containingm such
thatgµν = e2σ ηµν , whereσ ∈ F(M).

To understand the Petrov classification of the Weyl tensor we need a descrip-
tion of all real spacetime vectors and tensors in terms of the tensor algebra over
complex two-vectors (spinors), their complex conjugates and their duals. This is a
more basic description, since spinors are only describeable in terms of conventional
tensors in orientable causal Lorentzian spacetimes (Stewart, 1991).
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We will then define the spinor algebra as the two-dimensional vector space
S overC, equipped with a symplectic linear structure. That is, onS we have a
nondegenerate bilinear skew-symmetric two-form, called the skew-scalar product,
so that forψ, ϕ ∈ S:

[ψ, ϕ] = −[ϕ, ψ ].

With the standard Lorentzian scalar product defined using the metricg, every
null vector is self-orthogonal, but with the skew-scalar product every vector is
self-orthogonal. And sinceS is two-dimensional the space of vectors orthogonal
to a nonzero vectorψ consists precisely of all vectors proportional toψ . The
skew-scalar product defines a natural isomorphism, since for eachψ ∈ S we can
associate [ψ, ·] in the dual spaceS∗ of S, so that [ψ, ·] is a linear mapS→ C, by
ϕ→ [ψ, ϕ].

We can then define a spin basis forS by taking an arbitrary vectoro ∈ S
and lettingι be any nonparallel vector. Then we have that [o, ι] 6= 0 and we may
normalizeι to set the skew-scalar product equal to 1.

Given such a spin basis we can now define the components of vectors with
respect to this basis. Ifψ ∈ S the componentsψa, a = 0, 1 are

ψ = ψ0o+ ψ1ι,

where clearlyoa = [1, 0] andιa = (0, 1). We will then use the standard termino-
logy thatψa ∈ Sandψa ∈ S∗.

Since the skew-scalar product acts on two copies ofSwe may identify it with
elements ofS∗ × S∗ and will write εab = −εba, so that

[ψ, ϕ] = εabψ
aϕb ∈ C.

That (o, ι) is a spin basis forSnow translates to the elements of the basis satisfying

εabo
aob = εabι

aιb = 0, εabo
aιb = 1.

In the following the notion of symmetrization (· · ·) and anti-symmetrization [· · ·]
is applied to the spinor suffices. SinceSis two-dimensional any multivalent (multi-
indiced) spinor obeys9···[abc]··· = 0 since at least two of the indices must be zero.
If 9···ab··· is such a multivalent spinor then we can write it as (Stewart, 1991)

9···ab··· = 9···(ab)··· + 1

2
εab9

c
···c···

Thus any spinor9ab··· f is the sum of the totally symmetric spinor9a··· f and
exterior products ofεs with totally symmetric spinors of lower valence.

Although S is a vector space overC, S̄ 6= S and so alsoS̄∗ 6= S∗. We will
then use the notation that ifψa ∈ S, thenψa ≡ ψ̄a′ ∈ S̄.
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If ϕa is a univalent spinor every nowhere-zero null vectorVµ can be written
in one of these forms:

Vµ = ±ϕaϕ̄a′ , ϕa ∈ Sandϕ̄a ∈ S̄.

If then9ab···c is totally symmetric then there exist univalent spinorsαa, βb, . . . ,
γc so that

9ab···c = α(aβb · · · γc).

The corresponding real null vectorsαaᾱa′ , βbβ̄b′, . . . , γ cγ̄ c′ are called the
principal null directions of9.

With this we can write the Weyl tensor as

Cµνλκ = Cabcda′b′c′d′

= 8abcdεa′b′εc′d′ + 8̄a′b′c′d′εabεcd,

where8 is totally symmetric. Then there exist four univalent spinorsαa, βb, γc, δd,
the principal null spinors, so that

8 = α(aβbγcδd).

And therefore four null directions for8, namelyαaᾱa′ , βbβ̄b′ , γ cγ̄ c′ , and
δdδ̄d′ . There are then six cases to consider:

• Type I or {1, 1, 1, 1}, where none of the four principal null directions
coincide. This is known as the algebraically general case.
• Type IIor {2, 1, 1}, where two directions coincide. This and all other cases

are algebraically special.
• Type Dor {2, 2}, where there are two (different) pairs of repeated principal

null directions.
• Type IIIor {3, 1}, where three principal null directions coincide.
• Type Nor {4}, where all four principal null directions coincide.
• Type O, which happens for flat space, that is, when spacetime is empty.

The reader more interested in the spinor algebra and symplectic structure should
consult, for example, Stewart (1991).

APPENDIX C: THE INDEX OF A TWO-SPHERE

Let Sbe some two-dimensional surface inM that is not necessarily spacelike,
but that is a topological equivalent to a two-sphere,

(xµ1)2+ (xµ2)2+ (xµ3)2 = 1,

and that may cross itself at isolated points. Such a crossing point will be re-
garded as representing two distinct points ofS itself, each of these points must be



P1: GCR

International Journal of Theoretical Physics [ijtp] pp345-ijtp-364903 January 22, 2002 16:17 Style file version Nov. 19th, 1999

194 Antonsen and Flagga

treated independently of the other. SoSrepresents a mapping of a two-sphere into
M, S2→ M , and not just the image of the mapping.

If we deformSslightly we obtain another two-sphereS′ in M . We know that
generally two two-dimensional surfaces in a four-dimensional manifold will only
intersect in a region of dimension zero, that is, in points. Now chooseS′ so that
it only intersectsS in isolated, nondegenerate pointsmk, k = 1, 2,. . . , m, that is,
chooseS′ so thatS and S′ have no common tangent vectors at their points of
intersection.

If we assign an orientation toS we will also get an orientation forS′ since
it is derived fromS. Then at each intersection pointmk the vectors tangent to
the oriented surfacesS andS′ span the set of all vectors atmk, and so define an
orientation of this four-dimensional vector space. Now defineι(mk) to be+1 if
this orientation is the same as that ofM and−1 if it is the opposite.

The indexof the surfaceS is defined by

I (S) ≡
m∑

k=1

ι(mk).

If we reverse the orientation originally assigned to the surfaceS, then we also revert
the orientation ofS′ and so the index is unchanged. Note also that the index ofS is
independent of the way we distortedS to getS′, for under any further deformation
of S′, points of intersection are created in pairs whose values are+1 and−1.
Finally the indexI (S) must be continuous under deformations ofS, and since
I (S) takes only integral values we can conclude that the index is invariant under
such deformations. Note also, that the definition of this index does not involve the
metric defined onM .

And alternative definition and one which is intuitively easier to understand
(at least for the authors) is the following: LetVµ be a vector field that is nonva-
nishing in a neighborhood ofS and which is tangent toS only at nondegenerate
points. We now define the new two-surfaceS′ as being obtained fromSby moving
a small distance along the trajectories ofVµ. The intersection pointsmk of Sand
S′ now corresponds precisely to the points at whichVµ is tangent toS. Thus, the
index I (S) is the number of times (properly counted with regard to sign) thatVµ

is tangent toS.

APPENDIX D: CURVATURE AND SPINOR-STRUCTURE

We shall now display a curvature integral over two-spheres and show that if
this integral is less than a certain value it will be a sufficient (but not necessary)
condition for the existence of spinor-structure. As Geroch points out in his article
(Geroch, 1970) this integral represents one of the few situations in which, without
imposing any symmetries, the actual curvature of space with an indefinite metric
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is known to have a bearing on the global structure of the space; the following is
basically a recount of his findings.

M is again paracompact, and spacetime-, time- and space-oriented, andS is
the two-sphere which is topologically a two-surface. Choose a pointm ∈ Sand a
one-parameter family of curves onS, cs(r ), wheres ∈ [0, 1] labels the individual
curves andr ∈ [0, 1] is a parameter along each curve.

The curves are constructed so that they all begin and end atm ∈ S and all
other points ofS lie at exactly one of the curves, so that the family of curves cover
all of S. The curves withs= 0 ands= 1 are the “zero” curves that remain atm.

Let Va and Ua denote the tangent vectors to the liness= constant and
r = constant, whereVa andUa are normalized by the condition:

Va∇ar = Ua∇as= 1. (A2)

As always Greek letters (a, b, c) are dreibein indices ranging over (1, 2, 3) and
they label individual spacelike vectors, while Latin indices are tensor indices.

Now choose an arbitrary unit timelike vector fieldta onM . At m ∈ Schoose a
frame (a triad){ea

µ} of spacelike vectors that together withta form an orthonormal
frame atm. This is possible because of both space- and time-orientation ofM .

For each value ofs, the index that labels the individual curves, we transport
the frame of dreibeins{ea

µ} along the curvecs according to the equation

Vb∇b ea
µ = −ta

(
ec
µ Vb∇btc

)
. (A3)

Under this transport of{ea
µ} they remain orthogonal to the timelike vector fieldta

and to each other. When we have transported the frame of vectors back tom ∈ S
we have a new frame of vierbeins whose timelike vector coincides withta, but
whose spacelike vectors will in general be different from the original frame. Let
Rνµ(S) denote the corresponding rotation matrix:

ea
µ

∣∣
r=1;s = Rνµ(i ) ea

ν

∣∣
r=0;s=0,

(A4)
RγµRνγ = δνµ.

So for each of the curves (for each value ofs) we obtain a rotation atm and so
we define a curveRνµ(s) in the rotation group. Fors= 0 ands= 1, the rotation
is just the identity andRνµ then represents a closed curve, beginning and ending at
the identity element of the rotation group.

The tangent vector to this closed curve is obtained by taking the derivative of
the first equation (A4) with respect to the indexs:

Rµλ
d

ds
Rλν =

(
ea
µ Ub∇b eµν

)
r=1;s
=
∫

cs

ds Pµν , (A5)

where the integrand

Pµν = P[µν] = Vc∇c
(
ea
µ Ub∇b eµν

)
. (A6)
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If we expand this equation using Eq. (A3) and the fact that the Lie derivative of
Ua with respect toVa vanishes

LVU = (Va∂aUb −Ua∂aVa) eb = 0. (A7)

By construction, we get

Pµν = 2ea
µ eb

ν U [dVd] [(∇ctb)(∇dta)+ Rabcd]. (A8)

We can divide the closed curves in the rotation group into two classes: those that
may be contracted to a point (such as small loops or a rotation through an angle of
4π ), and those that cannot be contracted (such as a rotation through the angle 2π ).

If our rotation matrixRνµ(s) is of the latter type, then there is an essential 2π

twist in our frames onS. In this case it will not be possible to find a frame in a
neighborhood ofS, and soM will not have spinor structure.

We can characterize the curveRνµ(s) in terms of a length, by using the standard
invariant metric on the rotation group

L ≡ 1√
2

∫ 1

0

√(
d

ds
Rµν

)(
d

ds
Rµν

)
ds. (A9)

Whenever this lengthL is less than 2π the curveRνµ(s) may always be contracted
to a point.L = 2π happens when we rotate exactly 360◦ about a single axis. We
can therefore conclude that there will necessarily be a frame in the neighborhood
of SprovidedL < 2π .

WhenL > 2π we have a twist in the frame bundle and soM will not have
spinor structure. We can obtain an upper bound for this length, characterizing the
curves in the rotation group, which is independent of the indicesr ands, by first
substituting Eq. (A5) into Eq. (A9):

L = 1√
2

∫ 1

0

√(
Rµλ

d

ds
Rνλ

)(
Rµκ

d

ds
Rνκ

)
ds

= 1√
2

∫ 1

0

√(∫ 1

0
dr Pµν

)(∫ 1

0
dr Pµν

)
ds

≤ 1√
2

∫ 1

0
ds
∫ 1

0

√
PµνPµν dr. (A10)

But we also have that

PµνPµν = 4(gap− tat p)(gbq − tbtq)U [cVd]U [r Vs]

× ((∇ctb)(∇dta)+ Rabcd)((∇r tq)(∇stp)+ Rpqrs) ≤ 8U [cVd]U [r Vs]

× ((∇ctb)(∇dta)(∇r t
b)(∇st

a)+ RabcdRab
rs − 2tbt pRabcdRa

prs

)
. (A11)
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If we then substitute Eq. (A11) into Eq. (A10) and introduce the surface element
of the sphereS, dS= U [aVb] ds dr, we get

L ≤
∫

S
2
√(

RabcdRab
rs − 2tbt pRabcdRa

prs

)
dScd dSrs

+
∫

S

√
(∇ctb)(∇r tb)(∇dta)(∇sta) dScd dSrs. (A12)

As can be seen this equation still depends on the arbitrary unit timelike vector field
ta since the metric is not positive definite, being of Lorentzian signature. We can
eliminate this dependence only formally, by definingL(S) as

L(S) = min
ta

∫
S

2
√(

RabcdRab
rs − 2tbt pRabcdRa

prs

)
dScd dSrs (A13)

+
∫

S

√
(∇ctb)(∇r tb)(∇dta)(∇sta) dScd dSrs.

ButL depends onS in a nonlocal way because of the second integral, and it seems
as ifL cannot be expressed as a single integral overS. The relationship that Geroch
found between spinor structure and curvature is the following:

A sufficient (but not necessary) condition that M have spinor structure is that
every two-surface S that is topologically a two-sphere, may be deformed so that
L(S) < 2π . Note that we cannot conclude that ifM possesses spinor structure
then all two-surfaces that are topologically two-spheres obeyL(S) < 2π . We can
only conclude that their index is an even integer.
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