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Spacetime Topology (I) — Chirality and the Third
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The standard model of particle physics poses certain limitations upon the topology of
spacetime, most notably by imposing the triviality of an important family of character-
istic classes, the Stiefel-Whitney classes. In this, the first of two articles, we present a
physical interpretation of the first three Stiefel-Whitney classes. While the relationship
of the first two to the existence of spinor fields has been known since the sixties, ap-
parently no connection between the third class and microscopical physics seems to be
known. We show that the third class is related to chirality.

1. INTRODUCTION

Atfirst sight, it might be surprising that microscopical physics puts limitations
onthe global topological structure of spacetime, yet it is known that the first two so-
called Stiefel-Whitney classes; andws- (the generators of tHéech cohomology
groupsl—ﬁ Y™, Z,) and I:|2(M, Z,) respectively, see appendix), have far-reaching
consequences for physics, but this far the third and fourth remain to be investigated.

We will give a short introduction to this result, and then concentrate on the
next Stiefel-Whitney class. When we wish to construphgsically reasonable
spacetime to investigate, for example, global causality features, we should con-
struct the spacetime model so that it does not violate any deeply held physical
principles. But we should also investigate if the mathematics we employ may not
give us further information. It is the purpose of this, the first of two articles by
the authors, to prove that the third Stiefel-Whitney class does have a physical
interpretation. In fact, we claim that; is related to chirality. The triviality ofv;
leads to spacetime being orientable, wheris trivial it is possible to erect spinor
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bundles and when both are trivial then obstruction theory from algebraic geometry
tells us thatwvs is trivial, too (Bredon, 1993).

Obviously any physically reasonable spacetime must have w, = 1 and
thereforews trivial by construction. However, it is our conjecture that all four
Stiefel-Whitney classes of a physically reasonable spacetime must be trivial, and
all have physical significance. It is the purpose of this article to review the first two
in a physical context and show the physical significance of the third.

We will begin by listing some immediate topological restrictions to be im-
posed on any candidate for a physical spacetime manifold. Next, we will outline
the importance of the first two Stiefel-Whitney classes, before we attempt a gene-
ralization tows. Furthermore, we will suggest a natural chain of groups to be
studied in this respect. All of our results are, unless explicitly stated otherwise,
restricted to four dimensions.

Throughout this paper, we will try to avoid a heavy use of homological algebra
and instead concentrate on simple physical ideas. The paper can thus be seen as a
physicist’s view of the Stiefel-Whitney classes.

The notation is fairly standard: de Rham cohomology is denotdd'hwhile
Cech cohomology is denoted By", M denotes a four-dimensional spacetime
of Lorentzian signature2P(M) the space ofp forms on M, F(M) the space
of real functionsf : M — R, while I' denotes the set of sections in a given
bundle.

2. APHYSICALLY REASONABLE SPACETIME
IN GENERAL RELATIVITY

General relativity tells us that spacetinid, is a four-dimensional smooth
manifold. Itis equipped with a Lorentz (pseudo-Riemannian of index (1, 3)) metric
that divides the elements of each tangent sgadd into three classes, timelike,
null-like, and spacelike. A chart ol is a pair {J;, ¢;) of a coordinate neighbor-
hoodU; and a coordinate functiop, so that any evenh € M can be expressed
asg; (m) = {x°(m), xX(m), x3(m), x3(m)}. Without loss of generality we can take
M to be also paracompact, since a manifbldis known to admit a Lorentzian
metric if and only if it is paracompact (and it admits an everywhere-nonvanishing
continuous direction field) (Visser, 1996).

We shall employ the following groups:

O(1, 3)= {A e GL(4,R) | ApA' = n}, the Lorentz group

SO(1, 3)" ={A € O(3, 1)| detA=1, A} > 0}, the proper orthochronous Lorentz
group

SL(2,C) = {A e GL(4,C) | detA = 1}, the special linear group

SU(2) = {Ae GL(4,C) | AAT = ATA =1, detA = 1}, the special unimodular
group
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In other wordsS (1, 3)* is the set ofA € SO(1, 3) with Ay positive (i.e. these
{A} do not change the sign of time), and in the literature the notaﬂ,@)is also
often used. We have chos&0(1, 3)" for clarity.

We usually reject spacetimes having closed timelike curves and possibly also
incomplete geodesics, but that is not to say that it has been proven that they do not
exist in a spacetime that as accurately as possible describes the universe we live in.
Therefore we will not make any assumptions that eddigvith causality features
we cannot prove. We will, however, reject conditions Mnthat are known to
guaranteethe existence of closed timelike curves. What we will assume is that as
Hawking and Ellis (1973) write, “in order to be physically significant, a property
of space-time ought to have some form of stability, that is to say, it should also be
a property of ‘nearby’ space-times.”

We can now ask if the mathematical features of our spacetime model violate
any deeply held physical principles.

2.1. Compactness oM

Paracompactis a rather weak mathematical requirement to impose on a space-
time manifold. Would it be physically reasonable to sharpen it to asdrtebe
compact, or can we only assume tiviis noncompact, although paracompact? It
is known (Hawking and Ellis, 1973) that a compact Lorentzian manifold contains
closed timelike curves and would hence have problems with causality. Thus we
cannot takeM to be compact.

Now, with M noncompact, we have to be careful, as many results in the
mathematical literature only hold for compact manifolds. Siklcearries a metric
itis triangulizable (Nakahara, 1990). We can then define th@etti numbers as
the rank of the free Abelian part of théh homology group

b (M) = dimH, (M; R)
and the Euler characteristic as
X(M)Zbo—b1+b2—b3+b4.

But we do not have Poincaduality, sinceM is only assumed to be paracompact,
unless all the (co)homology groups are finite (Goldberg, 1962).

2.2. Connectedness and the de Rham Cohomology

As a topological spack! is connected if it cannot be written as the disjoint
unionM = M1 U M, of open setdvl; andM,, M1 N M, = @. If the universe truly
consisted of two disjoint subuniverses that cannot interact, it is reasonable to say
thatouruniverse only consists of the subuniverse that we reside in. We can therefore
claim that a physically reasonable universe is connected, which tells us that the
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zeroth de Rham cohomology group is the set of real numH&(®1; R) = R. We
can further assume thigt is also archwise connected, giving us thigtM ; R) = Z
andbg = 1.

Is it reasonable to assume the stronger demand, namely that all lodps in
can be shrunk to a point, or thit is simply connected? Since we do not want to
exclude the existence of exotic structures such as wormholes, we cannot impose
the vanishing of the fundamental growp(M)—clearly, a closed closed curve
going through a wormhole cannot be shrunk to a point. Thus spacetime may be
taken to be archwise connected but need not be simply connected.

2.3. Orientability of M

To progress further in imposing constraints iR we have to move beyond
generalrelativity. Through the Einstein equations, the matter content of the universe
imposes constraints upon its geometry. We will see that the known matter fields
also impose topological conditions. It is known that the experimental evidence
of nonconservation o€, P, andC P in elementary particle reactions, t&PT
theorem, and the strong principle of equivalence together imply that our universe
must be orientable (Visser, 1996).

Theorem1. Nonorientable spacetimes are incompatible with the standard model
of particle physics.

2.4. Causality Features ofM

We observe in our local region of spacetime that from any one evemé
are only able to influence those events that lie infirevard lightconeof m. But
whether or not this is a global property remains to be investigated, and this will be
done in our next article.

Aside from the gravitational field there will be various other fields o,
such as the electromagnetic field, the neutrino field, etc. Mathematically, fields
are sections of certain fibre bundles over spacetime. The gauge fields will be
connections on principal bundles. The equations of motion governing the matter
fields must be such thatd is a convex normal neighborhood anmdandm’ are
points inU, then a signal can be sentlihbetweemm andny if and only if m and
m’ can be joined by & (differentiable) curve lying entirely i), whose tangent
vector is everywhere nonzero and is either timelike or null; we shall call such
a curvenonspacelikeThis is thelocal causality conditiofHawking and Ellis,
1973).

Whether the signal is sent from to m’ or from m' to m will depend on
the direction of time inU. In our neighborhood of spacetime there is a well-
defined arrow of time given by the direction of increase of entropy in quasi-isolated
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thermodynamic systems, making it possible to distinguish past and future at least
locally. But it suffices to observe that the microphysics of the weak interactions
experimentally breaks time-reversal invariance (that isTtbétheCPTtheorem);
furthermore, we cannot even begin to define time reversal in time-nonorientable
manifolds.

Theorem 2. Time-nonorientability spacetimes are incompatible with the stan-
dard model of particle physics.

Physically it would seem reasonable to suppose that there is a local thermo-
dynamic arrow of time defined continuously at every point of spacetime, but we
shall only require that it should be possible to define continuously a division of
nonspacelike vectors into two classes, which we label future- and past-directed.
This means thaM is time-orientable which is indeed a physically reasonable
requirement sinc®l has a Lorentzian metric (Visser, 1996). We can now ask if
is alsospace-orientablethat is, if it is possible to divide bases of three spacelike
axes into right-handed and left-handed bases in a continuous manner.

Definition 1. A spacetime is space-orientable if (1) there exists a continuous and
everywhere-nonzero globally defined three-foam= %a)m,\dx” AdX* A dxH,
and (2) there exists an everywhere-nonzero timelike vector field that is continuous
up to possible sign reversal, known as the direction fi€fd), and (3)w(d) = 0.

We observe, locally, the ability to distinguish left from right, and in micro-
physics we also observe the breakdown of parity invariance Rtloé the CPT
theorem). If we believe that the noninvariance of weak interactions under charge
and parity reversals is not merely a local effect but exists at all points of spacetime,
then it follows that going around any closed curve the sign of a charge, the orien-
tation of a basis of spacelike, axes, and the orientation of time must all reverse or
none of them should. So if one assumes that spacetime is time-orientable then it
must also be space-orientable (Visser, 1996).

Theorem 3. Space-nonorientability spacetimes are incompatible with the stan-
dard model of particle physics.

The assumption that our four-dimensional manifMdcarries a (& 3) sig-
nature and is noncompact has three immediate consequences.

One is that the Dirac operator is no longer elliptic (Gockler and Schucker,
1987),y2 = —1 andM does not a priori contain closed timelike curves. We want
our model to be in agreement with findings in modern physics, be it the standard
model, general relativity, or cosmology. This already gives uswhat w, = 1
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and we will begin with reviewing in details the first and second Stiefel-Whitney
classes, and collect the consequences of the triviality of both.

3. SPACETIME ORIENTABILITY AND THE FIRST
STIEFEL-WHITNEY CLASS

An orientation onM can be defined using homology, forms, or the transition
functions for the tangent bundiEM. For sake of completeness, we will list all
these definitions here.

In (Milnor and Stasheff, xxxx) we find that lacal orientation un, for M
(dimM = n) atmis a choice of one of the two possible generatorgfgiM, M —

m; Z)*. Such a local orientatiop, has the physical property that it determines
local orientationg.y for all pointsm’ in a small neighborhood oh. To see this
definepk : Hi(M, M — L) — H{(M, M — K), whereK C L are both compact
and contained iM. The image ofok is thus a restriction t&. Let O be a ball
aroundm, then for eachm’ € O the isomorphisms (Husemoller, 1994)

Ho (M, M —m;Z) 2 H (M, M — 0:2) Y H,(M, M —m, Z)

determine a local orientatiqygy .

Definition 2. An orientationfor M is a function that assigns to eaohe M

a local orientationuy, that varies continuously witlmn in the following way:
For eachm there should exist a compact neighborhdbé@nd a homology class
un € Ha(M, M — N) so thatpny (un) = un for eachm’ € N.

So in our case an orientation is a homology-valued functioMorf : M —
Hs(M, M —m; Z).5 An alternative definition of orientability is the following

Definition 3. If the tangent bundle : TM — M is n-dimensional thei®2"(M)
is one-dimensional. This means tl§Zlt(M) — {0} has two components. Aarien-
tationon T M (and onM) is a choice of one of the components@f(V) — {0}.

4For the reader unfamiliar with homology theory it may help to think of a sphere around the removed
pointm. We can then define two inequivalent ways of going around the missing point, one for each
generator.

51tis worth noting that if the subsét containingmis compact, then there is one and only one homology
classuk € Hy(M, M — K; Z) which satisfiepm(ik ) = um for eachm € K (Milnor and Stasheff,
1974). IfM itselfis compact then there is one and only pigwith this property. This homology class
u = pum = [M]is called thefundamental homology clas$ M. This does not mean thi compact
possess only one generatortif(M, M — m; Z). The two generators of this homology group can be
thought of as the two inequivalent ways of going round a closed loop with the centre point removed.
But in caseM is compact only one of the generators satisfy the property mentioned above.
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Any orientable manifold then admits two inequivalent orientations, often
called right-handed and left-handed, respectively. The chogerm (orientation)
vanishes nowhere and is called th@ume elementt plays the role of a measure
when we integrate functionk € (M), and integrations of differential forms over
M is defined only wheM is orientable.

For the reader unfamiliar with this use of forms, it can help to think of it in the
following way: At a pointm € M the tangent spacg,M is spanned by the basis
{e,} = % wherex* is the local coordinate on the chéaft to whichm belongs.

If we let U; be another chart such thaf N U; # ¢ with local coordinatey* and
letm € U; NU; # @, thenTyM is spanned either bie,} or by {&,} = {%}.

The basis changes as

- axH

& = oy e,
where @x*/dy") are known as the transitions functioisin the theory of fibre
bundles. If the Jacobiad = det@x"/dy") = dett;;) > 0 on U; NU; then the
two basege, } and{e, } are said to define the same orientation &hdb said to be
orientable.

Definition 4. Theorientation bundleof M is the line bundle.M on M given by
the transition functions;; = sign detf; ).

Clearly, if M is orientable the orientation bundle is trivial, since the transi-
tions functions all become identically one. Moreover, the transition functions have
to satisfy the cocycle condition and hence form elements of thedsh coho-
mology group,H(M, Z,). The generator of this groupy, is known as thdirst
Stiefel-Whitney classThus [;;] = w1, and this gives the relationship between
orientability and triviality of the first Stiefel-Whitney class. For the particular case
of a (3+ 1)-dimensional manifold, we can summarize all of this in a theorem.

Theorem4. Forourfour-dimensional spacetime manifold M the following state-
ments are equivalent:

1. Misorientable (that is, spacetime-orientable, time-orientable, and space-
orientable).
2. There is a collectiord = {(U, ¢)} of coordinate systems on M such that

X
M = Uy, geolU and det(a—y") >0 on Uny;

v

whenevelU;; X, ..., x3) and (Uj; yo, . . ., ¥3) belongs tod.

In other words the Jacobian determinant for coordinate transformations
on U; N U; must be positive definite.
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3. The structure group of the tangent bundle reduces froifi, @) to

sq(, 3)*.

4. There is a nowhere-zero four-form on M
ws = wo12M) dX° A dxt A dXZ A dXE e QYM).

5. The first Stiefel-Whitney class (M) is trivial.
6. T M is orientable.
7. M’s orientation bundle is trivial, that is it possesses a global section.

For proof, see Geroch (1967, 1968, 1970) and Visser (1996). So as we in-
corporate the standard model of physics into our spacetime, we find that space-
time orientability is connected to the existence of a nowhere-vanishing section in
Q*(M), the vanishing of the first Stiefel~Whitney class and the positive definite-
ness of the Jacobian matrix. In fact the Stiefel-Whitney classes that are elements
of H' (M, Z,) are obstructions to global sections in certain bundles, as will become
clear as we proceed. We refer the reader unfamiliar @i&bh-cohomology and
characteristic classes to Bott and Tu (1982) or the appendixes.

It is worth mentioning that it is becaudé is time-orientable (in addition to
being spacetime-orientable) that the structure group reduces to the proper Lorentz
group and not only t&5Q(1, 3). This reduction of the structure group will be
important for the existence of spinor structures in the next section and the triviality
of the second Stiefel-Whitney class. Also note that siktés endowed with
a metric we can define thiavariant volume elementvhich is invariant under
coordinate transformations, by

Q4 =+/191dx° Adxt Adx® A dXC,

whereg = detg,,, andx* the coordinates of the chati (¢).

4. SPINOR STRUCTURE AND THE SECOND
STIEFEL-WHITNEY CLASS

The next important ingredient in the standard model is the existence of fami-
lies of fermions (leptons and quarks); thus our spacetime manifold must accommo-
date spinor fields. This turns out to impose yet another condition upon its topology.
First, however, we need to quickly summarize what we mean by defining spinors
on a general manifold.

Recall that for anyn-dimensional vector space, suchTagM equipped with
a metricg of signhature + s = n we can define th€lifford algebra r, s) as the
real associative algebra generated by the elements of the vector space that satisfy

VW + WV = 2g9(V, W)I.
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In n = 4 dimensions our 16-dimensional Clifford algebra has the following direct
sum compositions:

C(L, 3=} C =R&TnM & C?®C*®C*. )

We can ther_1 define the even subalgeBa= @ evelC' and the odd subspace
Co = ®i0ddC'. The elements of the vector space out of which we construct the
Clifford algebra that are of unit length

g(V, V) = £1

are made into the Clifford group Pm) generated by Clifford multiplication.
Pin(r, s) is a submanifold o€(r, s) and is therefore a Lie group with Lie algebra
spinf, s) = C2, again contained in the Clifford algebra itself. The Special Clifford
group, Spink, s), is the subgroup of Pin(s) consisting of even elements:

Spinf, s) = Pin(, s) N Ce.

Forn > 3, Spin¢, s)* is simply connected, and sin&Qr, s)* and Spink, s)*
share the same Lie algebra, Spjis) " is the universal covering group of the proper
Lorentz group. Any representation®f(1, 3)" then also yields a representation of
its universal covering group, just by composition with the covering gnapspinor
ordouble-valued representatior®(1, 3)"is defined by a linear representation of
Spin(1, 3} = SL(2, C) thatcannot be obtained from arepresentatidh©f3, 1)".

Since the Clifford group Pin(1, 3) is a subset of the Clifford algeba, 3)
with the same product, the Dirac representafiaf the algebra carried by* is at
the same time a group representation. It is a spinor representation and the vectors
of C* are called Dirac spinors. But while the Dirac representation is irreducible as
a representation of the Clifford algebra, iré&lucibleas a group representation.

M is said to admit a spin structure (which is not necessarily unique) if it
is possible to define apin bundle 8M) over M. To define this bundle we first
of all need to check if the frames used are globally defined. That is, we need a
global section in the frame bundfévl associated with the tangent bundi®l. If
x* are the coordinates d# andy* the coordinates od;, with U; NU; # ¢, the
coordinate change when going fragnto U; can be written by means of elements
from SQ(1, 3)*, the transition functions fof M (and by association, also for the
frame bundleF M).

These transition functions satisfy

titiktki =1, ti =1, tj € SO, 1)+.

To define the spin-bundle we must checBi®(1, 3)* lifts to its universal covering
group Spin(1, 3), the Special Clifford Group using the double-cover homomor-
phisme~1, which takes its values if..

For this “lifting” of SO(1, 3)" to exist, and thus define a spin bundle, the signs
of kerp = =1 must be patched together in a consistent manner. The obstruction
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to this is the second Stiefel-Whitney class. Physically speaking, then, this
characteristic class must be trivial, otherwise fermions would not be elementary
particles.

A spin structure onM is then defined by the transition functiofi$ €
Spin(3, 1Y = SL(2, C) such that

o) =tj, bkt =1, &i=1
A Dirac spinor is then a section of the the Dirac spin fibre bundle
(D(M), 7, M, C%, SL(2,C) ® SL(2,C)),

that is, a &, 0)® (0, 1) representation of the Lorentz gro®Q(3, 1)".¢ Since
spinors are of such fundamental importance to physics it will be interesting to
see what other properties are required of a manifold to allow a spinor structure.
The existence of a spinor structure is first and foremost related to the topological
properties of the underlying spacetime manifble—not the choice of metric. But
Geroch (1967) shows that the degree of curvature also must be investigated when
one looks to see if spinor fields can be admitted. Sinc€teh cohomology only
deals with topology this is somewhat surprising. But for there to be even the
possibility of a spacetime manifold not allowing spinor structure there must be a
minimum amount of curvature. This curvature is expressed in the form of a surface
integral and we have included a discussion of this in the appendixes.

Theorem 5. For our paracompact four-dimensional manifold M the following
holds(Geroch, 1970):

1. If the Weyl (or conformal) tensor in the Petrov classification (see ap-
pendixes) is everywherd,, 1, 1, 1], [2, 1, 1], [3, 1]or [4], or

2. if the Riemann tensor vanishes, or

3. if M arises from some initial-value data, thatis if M has a Cauchy surface,
then M possesses spinor structure.

6Since we already saw in the previous section that we have time orientability, we can assume that the
properness of the spin structures we will discuss below is implicit. For Lorentz signature manifolds
we must usually distinguish between proper spin structure and spin structure. The former comes from
the reduction of the Lorentz groudQ(1, 3) to the proper Lorentz groudd(1, 3)". A proper spin
structure requires not only orientability but also time orientability for the Lorentz group to reduce to
the proper. It is possible to define spinor structure without orientability, yet these alternative spinors
all seem to be unphysical. If one wishes to define spinor fields with respect to the full Lorentz group
the usual definition must be generalized. There are eight different simply connected covering groups
of SO(1, 3) that correspond to the various combinations of signsPfarT2, and PT)2, where
P (respectivelyT) is one of the two spin transformations corresponding to spatial reflections (time
reflections). Hence one can consider eight types of spin structures. Spin(4), the full spine group is
such thatP = +eg and T = +ete2¢3, such thatP2 = T2 = 1 andPTPT= —1 (wheres' are the
Clifford generators.). Each situation would be handled differently, depending on the topology of the
base spac#! and the structure desired for the vector bundle of spinors (Devék, 1979).
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For proof we refer the reader to Geroch (1967, 1968, 1970). If it is known
that M possesses spinor structure we will however not generally know about the
features of the Weyl or Riemann tensor. We can certainly not assume the Riemann
curvature tensor to vanish, as this would imply a completely flat spacetime. But
there are other ways of checking for the existence of a spinor structure.

Theorem 6. For our paracompact four-dimensional oriented spacetime M the
following statements are equal:

1. M possesses spinor structure.

2. Mis parallelizable.

3. The second Stiefel-Whitney classisvtrivial.

4. M possesses a global section in the frame bundle FM.

5. The fundamental groups of the frame bundle FM and M are related as
follows:

m1(FM) = m1(M) ® m1(FmM) = m1(M) ® Zo.

6. The index(S) is an even integer for every two-surface S that is topologi-
cally a two-sphere, in M.

For proof see, for example, Geroch (1967, 1968); for a definition of the index
I(M) see the Appendixes.

Most common solutions of Einstein’s equations satisfy one or another of these
conditions forM to have spinor structure (Geroch, 1970), but while certain of the
above criteria can be easily checked, others cannot be. The Schwarzschild solution
to the Einstein equations, for instance, does allow for a spinor structure, but it is
not immediately clear that this spacetime has a nowhere-zero continuous section
in its frame bundlé-M, that is, a system of tetrads or vierbeins.

Note also, that statement 4 cannot in general by assumed to hold for other met-
ric signatures and dimensions, while statement 2 only holds for a four-dimensional
paracompact spacetime. Hence, as spacetime orientation was related to the van-
ishing of the first Stiefel-Whitney class and a nowhere-zero continuous section
in 4(M), so the existence of spinors is related to the vanishing of the second
Stiefel-Whitney class, an elementidf(M, Z,) and a continuous global section
in the frame bundI&M.

How do we determine if the spin-structure M is unique? Each choice of
spin structure determines an element of the first cohomology ng’l(M, Z7)
and, conversely, each eIementIéF(M, Z,) determines a spin structure dn,
so that the set of spin structures is parametrizedHByM, Z,). If HX(M, Z5)
vanishes then the spinor structureMfis unique, which happens, for example,
whenM is simply connected (Geroch, 1968).
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The triviality of the first two Stiefel-Whitney classes have, as we have seen,
far-reaching consequences for physics. That abstract algebraic topology enters on
such a fundamental level was what led us to start our research concerning the two
remaining Stiefel-Whitney classag; = 1 leads to the reduction of the structure
group fromO(1, 3) toSO(1, 3) and then t& O(1, 3)*, while the triviality of the
second Stiefel-Whitney class makes it possible to lift 8@(1, 3)" bundle to
the universal covering L(2, C) bundle oveM. Both haveZ, as their kernels. We
therefore propose the following chain of groups to be linked to the four Stiefel—
Whitney classes:

0O(1,3)— SO(1,3)— SO1, 3)" - SL(2,C) - SL(2,C) ® SL(2,C)
— SU(2) - SQ(3).
SO(3) andSO(1, 3)" are simple Lie groupsSL(2, C) andSU(2) are not. All but
the last element in this chain of groups will be dealt with in this paper.

5. CHIRAL (WEYL) SPINORS AND THE THIRD
STIEFEL-WHITNEY CLASS

Cohomology can be equipped with a special operationSteenrod square
S : H'(M, Zy) — H'*¥(M, Z5). Sincew; andw, are both trivial we can utilize
the following theorem (Milnor and Stasheff, 1974):

Theorem 7. The cohomology class Swy; ) can be expressed as the polynomium

k .
r—k+i-1
Sq'w, = E ( . )Wk—i — Wiy

i=0 !

r—k r—-k+1
= WiW, + 1 Wk—1Wr 41 + 2 Wk—2Wr42- -+

r—1
+ r WoWr 1k,

where S§: H'(M, Z,) — H KM, Z,).

This gives us
Sqlwz = W1W2 + WoWs, (2)

and sincevg, w1, andw; are all trivial we get thaivs, too, is a trivial cohomology
class’ This, however, does not mean thej in itself does not contain any inte-
resting physical information. We will argue thag is related to chirality. This is

"For more on Steenrod squares see Bredon (1993). It is an odd coincidence that this square can be
used to calculate/s, but not, e.g.wg4.
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actually a rather natural question to study. We have seen that the first two Stiefel—
Whitney classes are obstructions to the existence and uniqueness of a (proper) spin
structure. Once spinors have been defined, it is natural to askmdsbf spinors
can be defined? Imposing no conditions, we of course get Dirac spinors, but we
can try to impose extra conditions to see when Weyl or Majorana spinors can be
defined. Majorana spinors are eigenstates of the charge conjugation operator, and
they do not seem to exist in nature (Ramond, 1989). The neutral fermions, the
neutrinos, that do exist are chiral, that is, have a definite handedness. A priori, the
existence of chiral spinors poses further restrictions upon the spacetime manifold.
Hence, that is what we are going to consider now.

Consider thus the Clifford algeb@(3, 1) defined in the previous section.
Since the element® = £%'s2s% € C* anticommutes with all elements 6f* =
TmM it commutes with all elements &2, since

[€%, 626P] = (€%, £2)eP — £3(e%, &P} = 0, 3)

whereg2sP are the six generators @2. By extensions® then commutes with
all of C¢ so it belongs to the centrg(C,) of this subalgebra, and can thus be
diagonalized. Its action is then reduced to multiplication by a scalar (eigenvalue)
and to each eigenvalue there corresponds an eigenspace. In other words we can
usee® to reduce the Dirac spinors.

Forn even we defings as the Dirac representation of the generatdC'af

vs = p(e%"---e"). (4)
With
n(n—1)

vi=(-1"z "I,

wherer 4+ s = n is the dimension andl is then x n unit matrix; the following
operators are projectors:

L= % <| - \/(—1)”‘"7““;/5) (5)
R= % <| +/ (=)™ l“‘“‘7/5) (6)

In our four-dimensional case with a (1, 3) signature we have
)/52 =1 ’
giving the projection operators the following form
1 1
L = — I —_— | R = = I |
2( ¥s) 2( +iys)

and a Dirac spinoty € I'(M, (D, np, M, C?4, SL(2,C) & SL(2, C))) splits into
two SL(2, C)-invariant components (in other words in addition to irreducible
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representations of the Clifford algeb@4l, 3) we now also get irreducible repre-
sentations of Spin(1, 3)

yL=Ly Yr= Ry
called left- and right-handed Weyl (or chiral) spinors.
The key factor to note about the standard model of particle physics is that the

weak interactions are chiral, that is they exist in a definite eigenstate of the chiral
operatorys:

ys¥L = —iy, and ysyr =+ YR
Particle physicists are used to seeing Eqg. (4) in flat space defined as

signfabcd|
vs = yoylytyt = =y,

where as usual, thg matrices are Dirac representations of the generators of
Cl, y2 = p(¢?), and they generate Spin(1;3% SL(2, C). Not all y matrices are
unitary and they are said to carry a nonunitary representation of the Lorentz group
s, 3)t.

When using the standard model of particle physics in a curved spacetime
manifold? the definition ofys has to be generalized to

Wlpvix )
ys = % e e € e vy,

whereeh € SO(1, 3)" are the vierbeinsgy;,,1,; is a four-form, and the matrices
satisfy

Vs o} =201, (7)
{ys, v"} =0. 8)
Let m € U;, whereU; is a chart, whose coordinatex$ (m). The four-form can
be expanded as
Opvin] = @4 = wo12dM) AX° A dxE A dX? A dXE, (9)

with a positive definitewgi2z € F(Ui). So onU; the four-form is defined and
belongs toQ*(U;). At m, T,,U; has natural basisa%} onU; and a frameg =
{eo, €1, &, &3} atm s expressed as

, O<ax<3i (20)

m

ea:eg

8Really,y is a section of the product bundiéM, (D, M, 7, C*, SL(2,C) & SL(2, C))) ® E, where
E is an associated vector bundle®fM, G) in an appropriate representation, describing the “inner”
degrees of freedom (color etc.). But we can ignore these “inner,” gauge, degrees of freedom for now
and concentrate on the spacetime transformation properties of the fermionic fields.
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In curved space we can therefore locally define the chirality opeyatand
the projection operatof® andL;, whose actions on a sectigh of the local Dirac
bundle O, 7p, U;, C*, SL(2,C) @ SL(2,C)) are

1 .
Liyi = E(I —iysi)¥i = VL,
(11)

1
Ry = 5(' +iysi)¥i = YR,

wherey_; becomes a section of the left-handétyl bundle(W, mw, Ui, C?,
SL(2, C)) andys; r becomes a section of the right-handed Weyl bundiey;, Ui,

C?, SL(2, C)). These spinor bundles can always be defined locally and are glob-
ally defined whenw;, is trivial. We will return to this below, and for now sim-
ply note that we can locally write the Dirac bundle as Whitney-sum bundle

D =W W. Thatis,D = W & W is the pullback bundle otV x W by the map

fi : Ui = U; x Uj, defined byf;(m) = (m, m) (embedding in the diagonal).

D=WoW 2 WxW
Tl | mw X mw
M5 MxM

OnU; the fibre of the local Dirac bundle & @ C2. If we Iet{ti"jv} and{tiVjV} be the
transition functions ofV andW respectively, then the transition functidy) of
W @ W is the 4x 4 matrix

tm 0

Note that we now employ the notatigp = ti‘j"’ for clarity.

If we try to extend this reduction of the Dirac bundle to allMfwe see that
we must extendv, throughout all ofM. This amounts to the componeng; 23
remaining positive definite on any chéait, and the positive definiteness must be
independent of the choice of coordinates. If this can be doneNh&norientable
andw; is the volume element defined in Section 3.

Letm e Ui NU; NUg NU; # @, and lex”, y*, z*, andu* be the coordinates
of Uj, Uj, Uy, andU, respectively.
Then the frameé = {ey, €1, &, &3} atm can now be expressed as

d d ad ., 0
R Il T R
OXH | IYH |y azZ* |, aut |
where €)), (&), (€4), and &) € SQ(1, 3)". Sincee; = % & we get

um=((57) ) e sowar.
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and in a similar manner, for example,

we((2)): v () - () o

So, using thex coordinate we can writg* = €4 y2. On the intersectiot; N
U; N Uk NU; we therefore have

y" = ey?
& 7=ty =8y =t ehy? (14)
With this notation, Eq. (9) fom € Ui NU; N U, N U; becomes
axo axt NG ax3
= m) — dy* A dy’ A —dy* A d
w4 = wo123(M) ayn Y 3y y 3y y Yy y

= w0123(m) de(%) dy° ZANRERIVAN dy3

= wor2d(m) detfi;)dy’ A --- Ady?

= wor29(m) detf;j) dettjx)dP A --- A dZP

= wo124(m) detf;;) dett;k) deti)du’ A --- A dud

= wo124m) det;j) dettjc) dettw) detyi)dx° A--- Adx®  (15)

The determinants in Eq. (15) are clearly the Jacobians of the coordinate transforma-
tions and must not only be positive, they must be 1. This is satisfied if the structure
group isSQ(1, 3)" (and in the generai-dimensional case if the structure group
for T M is SQ(r, s)) so thatwp;23is independent of the choice of coordinates).

So we see that to define chirality globally we must have a globally defined
four-form, which is equivalent to requiring that; is trivial and M orientable.
In higher even dimensions, a generalization to a globally definedform is
straightforward (Visser, 1996).

We have thus recovered the known theorem stated below.

Theorem 8. Chiral fermions exist if and only if spacetime is orientable (and the
second Stiefel-Whitney class vanishes).

So from our discussions in the previous sections, we propose the following
theorem.

Theorem 9. Chiral (or Weyl) fermions exist if and only if the first and second
Stiefel-Whitney classes both vanish.

The remainder of this section will be devoted to proving the following.
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Theorem 10. Inann-dimensional spacetime (n even) chirality is globally defined
if and only if ws € H3(M; Z5) is trivial.

In the course of doing so we also prove the following.
Corollary 1. wsis trivial if and only if wy = w, = 1.

This, as mentioned earlier, could already be found using Steenrod squares,
but can also be done in a “physicist’s way” as outlined here.

We can now see what is required for the chirality operators, projection op-
erators, and the Whitney-sum bundle to be defined globally. If we Rke
%(I + iys,) (the calculations fok; are similar) we find that we must have

R = (0 +irs) (16)
or

g
_|_

Dpva],i a, b c. d
2 y%@@yyyy»

_— T/
+

+i det(tlj UMM ](tlj)4 e%eK yaybycyd)>

NI NIFE NP N

/

(e
|<detm, ‘“K“ 'nJ “njé%njéﬁhjé”yabeCVd))
(

(

| +i (dett;;) dett;) “““]k(t.,)“(tjk)“

X
Bl
B

€ €y Va)’b)/c)/d))

Il
NI~

/

X
o
SR +

i (det([ij) dett;i) detta) w[KZ,M]’I (&) (t) *(t)’
Lty yy9))
(' +i (det¢|1t1ktk|t||)M(tuhktkltn) el el el e aJ/bVCVd)>

17)

I\)ll—‘

(Note the slight abuse of notation.) Since tiies obey the cocycle condition

(tij tjktia b )* =1, and as we discussed above, the determinant is also trivial since
the transition functions belong to a Special Orthogonal group, we can extend the
projection operators to all di. If the Dirac spin bundle is globally defined it
should be possible to write it as the Whitney sim= W & W.
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The chiral projection operators should act on a secfioa ; of the Dirac
bundle so that

1 .
Ry = E(l +iysi)¥i

1 . 1 .
=5 +iys)¥j = 51 +iys))Tij v

1 .
= 5(' +iys)Ti TikTa Ti ¥

= YRi (18)

is well defined. This is the case if thg;s define the Dirac_spin bundle over
M, where, as before the transition functidp of D =W ® W is a (dinF +
dimF’) x (dimF + dimF’) matrix, F being the fibre ofN andF’ the fibre ofW:

t¥(m) 0
Tii (m) = < J0 tf(m)) . (19)

In the (143)-dimensional case, with = F' = C?, Tij becomes a 4 4 matrix
belonging toSL(2, C) & SL(2,C), in the generat + s = n-dimensional case,
T; € Sping, s) ® Sping, s). For theT;; s to define the Dirac spin bundle over
we see from Eq. (18) that they must satisfy

Ti TikTkTi = Inxn

tWt tk|t|l 0 ) ( IDXE 0 >
N . 2s (20)
< 0 tWthtk|t|l 0 IEX%

SoTj; defines a Dirac spinor bundle ot if tW andt‘” define thew bundle and

W bundle overM respectively. But we already know that this is the case if the
SAQ(r, s)* bundle lifts to the Spin( s)™ bundle oveiM, and the obstruction to this
is the second Stiefel-Whitney class.

The universal covering mag sends both Spin(s) and Spin, s) to
SO(1, 3)" so thatp(t) = ¢(t]) = tij and theCech 2-cochain is defined as

o Mtitikt) = f20, J, K.
Whenws is trivial we know that
tl\?lthtkl == tl‘?’tjktkI’ (22)
giving us

| = Uty ] = treiniein = treh e (22)
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as well as

| = tiVjV ﬁt,{{ | = tﬁtﬁtﬂtﬁtﬁ = tiVjV JVY(tk“YthiV. (23)

We can therefore define tiéech 3-cochairfz as

fa(i, j, k) = T T T T, fo(l, 1K)t 0 (24)
I, 5 y — i H = . . [ —
3l J ij ik T T 0 (i, J, KL
only whenws, is trivial. If H2(M; Z5) itselfis trivial, then the Dirac spinor structure
is unique, and here we can see why-f(M; Z,) only contains one element, there
is only one Weyl spinor structure from which to build to the Dirac spinor structure.
f3 is obviously symmetric and it is trivially closeds = | if it can be de-
fined, and thus it determines an elemefd [= wz € H3(M; Z,). So, asw; is an
obstruction to orientability and/, an obstruction to a Weyl spinor structure, so
wj is an obstruction to Dirac spinor structure and global chirality.

6. THE REDUCTION OF THE STRUCTURE GROUP

The first two Stiefel-Whitney classes could be expressed as obstructions to
changing the structure group. Rej it was to the reductio®(3, 1) - SO3, 1),
which we can further reduce to its connected (883, 1)+, whereasv, was the
obstruction to the lifting to universal covering grol®Q(3, 1)t — Spin(3, 1)~
SL(2, C), whichagain was extended$d (2, C) & SL(2, C), resulting inthe Dirac
bundle. Now, the Lie algebral,(C), of SL(2, C) can be written as the complexi-
fication of su(2), sl>(C) ~ su(2) ® C. It is therefore natural to assume that we
can reduce the structure groups fr@&i(2, C) to SU(2) and that this reduction
has something to do with the third Stiefel-Whitney class.

A famous solution to Eq. (7) in four dimensions is the so-called Pauli-Dirac
form, utilizing the four 2x 2 matrices:

N R R R )

where 63, 02, 03) are the Pauli matrices, a representation of $t€2) algebra
generators. Withy* = g*”y, we can now write the solution to Eqg. (7) as

AR

Chirality splits the set of sections in the Dirac bund®, ¢, M, C*%, SL(2,C) &
SL(2,C)) into SL(2, C)-invariant components according to the eigenvalugs of
SL(2,C) is the complexification ofSU(2), that issl(2,C) = su(2) ® C.
When we now look at Eqg. (25) we see that when chirality splits the sections of the
Dirac-bundle, not only does the structure grasip(2, C) & SL(2, C) split into
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SL(2,C) and SL(2, C), but it reduces even further to two copies of the unitary
groupSU(2), giving us the Weyl bundlew, 7, M, C?, SU(2)).

This happens by simply considering Chiral (Weyl) spinors. But we can now
conclude that when a chiral structure exists (i.es i defined globally), then the
structure group reduces fro8L(2, C) to SU2), and the Dirac equation reduces
to the Weyl equation.

7. CONCLUSION AND OUTLOOK

We gave a “physicist’s view” of the first three Stiefel-Whitney classes in
terms of restrictions imposed by the standard model of particle physics upon the
topology of spacetime. Each of the three classes were related to the definition of
a certain bundle, to the change of structure group, and to a physical requirement.
Our findings are summarized in the table below.

It becomes natural to look for a similar interpretation of the final Stiefel—
Whitney classyvg.

Class Bundle Group Meaning
w1 Orientation 0O(3,1)— SQO@3,1) Orientation
W Dirac SQ(3, 1" — SL(2,C)  Spin structure
w3 Weyl SL(2,C) — SU(2) Chirality

The problem is where to start. If we consider the changes in structure group, it is
natural to consider one more reduction (in fact, the last nontrivial one possible),
namelySU(2) — SO(3). This would be a kind of “mirror image” of the second
Stiefel-Whitney class construction, sin8&J(2) is the double covering & O(3),

and this is isomorphic to Spin(3). We therefore suggest to study the chain of groups
already mentioned earlier:

0(3,1)— SO3, 1)— SO3E, 1)F — SL(2,C) — SL(2,C) & SL(2, C)
— SU2) — SO3).

On the other hand, the only ingredient we have not really used so far is
causality. We therefore conjecture the fourth class to be related to causality and to
the groupS O(3) in the above chain; this is the topic of a sequel paper, which is in
progress.

APPENDIX A: THE CECH COHOMOLOGY

If afunction onM is Z,-valued, totally symmetric, and definedidp N U, N
---N U, thenf isaCech r-cochainlf we by C" (M; Z,) denote the multiplicative
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group ofCechr -cochains we can define the coboundary ope&tof (M; Z,) —
C'*Y(M; Zy), by

r+1

GF)osin, . irsfegn) =[] flor -1 irg),
j=0

where the variables with the circumflex () is omitted. The coboundary operator is
nil-potent so thas? f = 1, where 1 is the trivial element, as we employ multiplica-
tive notation. The cocycle groufy (M; Z,) and the coboundary groly (M; Z5)

are then defined as

Z'(M;Zy) = {f e C" (M, Zp) | §f =13},
B"(M;Zy) = {f e C"(M;Zy) | 3f' € C""}(M;Zy) : f =5f').
Now we can define theth Cech cohomology groupy

kers, _ Z"(M; Zy)
im&_1  B"(M;Zp)

H(M; Z,) =

APPENDIX B: THE WEYL TENSOR AND THE
PETROV CLASSIFICATION

When the Riemann curvature tensor is defined, we can construct new tensors
by index contraction such as the Ricci tensor

H A
Ric,, = R,m:
the scalar curvature
R = g"’ Ric,,,

and forn > 4 theWeyl tensor

1 . . . .
C/LU)\K = R;LUAK + m(RIC/LAgUK - R|Cukg/LK + RICI)K g;M - RlC/Lng)L)

R
+ m(gﬂkg\w - gwgm). (Al)

For dimM > 4 a necessary and sufficient condition for conformal flatness is that
C =0, that is, ifC = 0 then everym € M has a charty, ¢) containingm such
thatg,, = € 1,,, wheres € F(M).

To understand the Petrov classification of the Weyl tensor we need a descrip-
tion of all real spacetime vectors and tensors in terms of the tensor algebra over
complex two-vectors (spinors), their complex conjugates and their duals. Thisis a
more basic description, since spinors are only describeable in terms of conventional
tensors in orientable causal Lorentzian spacetimes (Stewart, 1991).
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We will then define the spinor algebra as the two-dimensional vector space
S over C, equipped with a symplectic linear structure. That is,®we have a
nondegenerate bilinear skew-symmetric two-form, called the skew-scalar product,
so that fory, ¢ € S:

[Wl (;0] = _[(p! lﬂ]

With the standard Lorentzian scalar product defined using the ngtevery
null vector is self-orthogonal, but with the skew-scalar product every vector is
self-orthogonal. And sinc8& is two-dimensional the space of vectors orthogonal
to a nonzero vectoty consists precisely of all vectors proportional#o The
skew-scalar product defines a natural isomorphism, since forzacl® we can
associatef, -] in the dual spac&* of S, so that |/, -] is a linear maS — C, by
¢ = [V, ¢l

We can then define a spin basis Biby taking an arbitrary vectoo € S
and letting: be any nonparallel vector. Then we have tlmat] # 0 and we may
normalize: to set the skew-scalar product equal to 1.

Given such a spin basis we can now define the components of vectors with
respect to this basis. if € Sthe componentg?, a =0, 1 are

v =y +yh,

where clearlyo? = [1, 0] and:? = (0, 1). We will then use the standard termino-
logy thaty? € Sandy, € S*.

Since the skew-scalar product acts on two copiedwé may identify it with
elements of5* x S* and will write eap = —&pa, SO that

[V, ¢] = canyy?” € C.
That (O, ¢) is a spin basis foE now translates to the elements of the basis satisfying
£a50%0° = a2 = 0, £ap0?? = 1.

In the following the notion of symmetrization-(-) and anti-symmetrization { ]

is applied to the spinor suffices. SinB& two-dimensional any multivalent (multi-
indiced) spinor obey¥..[apg... = 0 since at least two of the indices must be zero.
If . ap.. is such a multivalent spinor then we can write it as (Stewart, 1991)

1 c
V. ab. = Y. (@ap).. + E‘gabqj»»»cm

Thus any spinol,y,...s is the sum of the totally symmetric spindx,...s and
exterior products ofs with totally symmetric spinors of lower valence.
Although S is a vector space oveE, S# Sand so als&S" # S*. We will

then use the notation thatif2 € S, theny @ = 1/7'3/ €S
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If ¢ is a univalent spinor every nowhere-zero null vedfércan be written
in one of these forms:

Vi = £0%0%, ¢* € Sand¢® € S.

If then Wy, is totally symmetric then there exist univalent spinegsp, . . . ,
¢ SO that

\I"ab---c = Ol(aﬂb Vo)

The corresponding real null vectokga?, gPBY, ..., y°y° are called the
principal null directions ofl.
With this we can write the Weyl tensor as

Cie = Cabcdabod
= Papcdfabécd + Pabod Eableds

whered is totally symmetric. Then there exist four univalent spingsssy, ve, 84,
the principal null spinors, so that

D = a(aBpycda).

_ And therefore four null directions fod, namelyo?a®, gAY, y°5*, and
8989, There are then six cases to consider:

e Type lor {1, 1, 1, 3, where none of the four principal null directions
coincide. This is known as the algebraically general case.

e Type llor {2, 1, 1}, where two directions coincide. This and all other cases
are algebraically special.

e Type Dor {2, 2}, where there are two (different) pairs of repeated principal
null directions.

e Type lllor {3, 1}, where three principal null directions coincide.

e Type Nor {4}, where all four principal null directions coincide.

e Type Q which happens for flat space, that is, when spacetime is empty.

The reader more interested in the spinor algebra and symplectic structure should
consult, for example, Stewart (1991).

APPENDIX C: THE INDEX OF A TWO-SPHERE

Let She some two-dimensional surfaceNhthat is not necessarily spacelike,
but that is a topological equivalent to a two-sphere,

()2 4 ()% + (x0)2 = 1,

and that may cross itself at isolated points. Such a crossing point will be re-
garded as representing two distinct pointsdfself, each of these points must be
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treated independently of the other. Seepresents a mapping of a two-sphere into
M, > — M, and not just the image of the mapping.

If we deformS slightly we obtain another two-sphegin M. We know that
generally two two-dimensional surfaces in a four-dimensional manifold will only
intersect in a region of dimension zero, that is, in points. Now ch&se that
it only intersectsSin isolated, nondegenerate poimtg, k = 1, 2,..., m, that s,
chooseS so thatS and S have no common tangent vectors at their points of
intersection.

If we assign an orientation t8 we will also get an orientation fo8 since
it is derived fromS. Then at each intersection poimi; the vectors tangent to
the oriented surfaceS and S span the set of all vectors at;, and so define an
orientation of this four-dimensional vector space. Now def{n&) to be+1 if
this orientation is the same as thatMfand—1 if it is the opposite.

Theindexof the surfaceSis defined by

m
(S =D u(my).
k=1
If we reverse the orientation originally assigned to the surgteen we also revert
the orientation o and so the index is unchanged. Note also that the ind&iof
independent of the way we distort&do getS, for under any further deformation
of S, points of intersection are created in pairs whose valuestdrand —1.
Finally the indexl (S) must be continuous under deformationsS)fand since
I (S) takes only integral values we can conclude that the index is invariant under
such deformations. Note also, that the definition of this index does not involve the
metric defined or.
And alternative definition and one which is intuitively easier to understand
(at least for the authors) is the following: L€ét* be a vector field that is nonva-
nishing in a neighborhood & and which is tangent t& only at nondegenerate
points. We now define the new two-surfé&es being obtained frorf8 by moving
a small distance along the trajectoriesvdf. The intersection pointsy of Sand
S now corresponds precisely to the points at whithis tangent tcS. Thus, the
index | (S) is the number of times (properly counted with regard to sign) tat
is tangent tcS.

APPENDIX D: CURVATURE AND SPINOR-STRUCTURE

We shall now display a curvature integral over two-spheres and show that if
this integral is less than a certain value it will be a sufficient (but not necessary)
condition for the existence of spinor-structure. As Geroch points out in his article
(Geroch, 1970) this integral represents one of the few situations in which, without
imposing any symmetries, the actual curvature of space with an indefinite metric
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is known to have a bearing on the global structure of the space; the following is
basically a recount of his findings.

M is again paracompact, and spacetime-, time- and space-orientefljsand
the two-sphere which is topologically a two-surface. Choose a poitSand a
one-parameter family of curves @ cs(r), wheres € [0, 1] labels the individual
curves ana € [0, 1] is a parameter along each curve.

The curves are constructed so that they all begin and endaats and all
other points ofSlie at exactly one of the curves, so that the family of curves cover
all of S. The curves witts = 0 ands = 1 are the “zero” curves that remainrat

Let V& and U? denote the tangent vectors to the lires- constant and
r = constant, wher®&'? andU? are normalized by the condition:

Vavr = U3V,s = 1. (A2)

As always Greek lettersaa( b, ¢) are dreibein indices ranging over (1, 2, 3) and
they label individual spacelike vectors, while Latin indices are tensor indices.
Now choose an arbitrary unit timelike vector fi¢fdon M. At m € Schoose a
frame (a triad)€?} of spacelike vectors that together withform an orthonormal
frame atm. This is possible because of both space- and time-orientatibh of
For each value of, the index that labels the individual curves, we transport
the frame of dreibeinge? } along the curves according to the equation

VOVp el = —t? (e VPVpte) . (A3)

Under this transport ofe? } they remain orthogonal to the timelike vector fi¢fd
and to each other. When we have transported the frame of vectors back ®
we have a new frame of vierbeins whose timelike vector coincides t#jthut
whose spacelike vectors will in general be different from the original frame. Let
R),(S) denote the corresponding rotation matrix:
e2|r=1;s = Rl]i(i)eﬂ
RIR) =4,
So for each of the curves (for each valuespfve obtain a rotation an and so
we define a curveR)(s) in the rotation group. Fos = 0 ands = 1, the rotation
is just the identity andR), then represents a closed curve, beginning and ending at
the identity element of the rotation group.
The tangent vector to this closed curve is obtained by taking the derivative of
the first equation (A4) with respect to the index

d
Rux d—SRﬁ = (eﬁ ubv, eI”)r=1;s = /csds P, (A5)

where the integrand

r=0;5=0’ (A4)

Puw = P = VoV (€ UVpe,,). (A6)
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If we expand this equation using Eq. (A3) and the fact that the Lie derivative of
U2 with respect tdv2 vanishes

LyU = (V33,UP — U233,V g = 0. (A7)
By construction, we get
P., =26 & UVI[(Vety)(Vata) + Raved- (A8)

We can divide the closed curves in the rotation group into two classes: those that
may be contracted to a point (such as small loops or a rotation through an angle of
47), and those that cannot be contracted (such as a rotation through thezajpgle 2

If our rotation matrixR},(s) is of the latter type, then there is an essential 2
twist in our frames orS. In this case it will not be possible to find a frame in a
neighborhood of5, and soM will not have spinor structure.

We can characterize the curié(s) in terms of a length, by using the standard
invariant metric on the rotation group

ff / R Rw)ds (A9)

Whenever this length is less than 2 the curveR;(s) may always be contracted

to a point.L = 27 happens when we rotate exactly 3@&bout a single axis. We

can therefore conclude that there will necessarily be a frame in the neighborhood
of SprovidedL < 2r.

WhenL > 27 we have a twist in the frame bundle and Mowill not have
spinor structure. We can obtain an upper bound for this length, characterizing the
curves in the rotation group, which is independent of the indicaisds, by first
substituting Eq. (A5) into Eq. (A9):

\/_/\/ 1 G RﬂkdiR”K>ds
=%z/§/(/§dfpw> ([eree)es

1 1 1
< —/ ds/ v/ Puy PHvdr. (A10)
V2 Jo 0

But we also have that

P, P™ = 4(g% — t3tP)(g" — tPtulevdylrys
 ((Voto)(Vata) + Rabed) (Vrta)(Vstp) + qurs) <gulevaylrys
% ((Veto)(Vata) (Vi t°)(Vst?) + RapcaRE — 2t°tPRapeaRSys).  (A11)
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If we then substitute Eq. (A11) into Eq. (A10) and introduce the surface element
of the spheres, dS= UV ds dr, we get

L < / 2,/ (RancaRED — 2ttP RopeaR?, ) d S d §°
S

+ / J(Vete) (Vs ) (Vata) (Vot?) d ST A S5, (A12)
S

As can be seen this equation still depends on the arbitrary unit timelike vector field
t2 since the metric is not positive definite, being of Lorentzian signature. We can
eliminate this dependence only formally, by definifi(fs) as

£(S) = min /S 2\/ (RabcaReP — 2tPtP RapeaRe, ) dS9dS®  (A13)

T / Vo) (% ) (Vala) (Vat?) d S d S°.
S

But £ depends otsin a nonlocal way because of the second integral, and it seems
as if £ cannot be expressed as a single integral 8v&he relationship that Geroch
found between spinor structure and curvature is the following:

A sufficient (but not necessary) condition that M have spinor structure is that
every two-surface S that is topologically a two-sphere, may be deformed so that
L(S) < 2. Note that we cannot conclude thatNf possesses spinor structure
then all two-surfaces that are topologically two-spheres di{&) < 2. We can
only conclude that their index is an even integer.
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